ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronic shift in pionic hydrogen

255   0   0.0 ( 0 )
 نشر من قبل Detlev Gotta
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hadronic shift in pionic hydrogen has been redetermined to be $epsilon_{1s}=7.086,pm,0.007(stat),pm,0.006(sys)$,eV by X-ray spectroscopy of ground state transitions applying various energy calibration schemes. The experiment was performed at the high-intensity low-energy pion beam of the Paul Scherrer Institut by using the cyclotron trap and an ultimate-resolution Bragg spectrometer with bent crystals.



قيم البحث

اقرأ أيضاً

60 - D.Gotta 2003
The measurement of the pion-nucleon scattering lengths constitutes a high-precision test of the methods of Chiral Pertubation Theory, which is the low-energy approach of QCD. The pion-nucleon s-wave scattering lengths are related to the strong-intera ction shift and width of the s-states of the pionic hydrogen atom. Shift and width are determined from the measured energies and line widths of X-ray transitions to the 1s ground state when compared to the calculated electromagnetic values. A new experiment, set up at the Paul-Scherrer-Institut, has completed a first series of measurements.
The strong interaction shift and broadening in pionic deuterium have been remeasured with high statistics by means of the (3p-1s) X-ray transition using the cyclotron trap and a high-resolution crystal spectrometer. Preliminary results are (-2325+/-3 1) meV (repulsive) for the shift and (1171+23/-49} meV for the width, which yields precise values for the pion-deuteron scattering length and the threshold parameter for pion production.
The strong interaction shift $epsilon$ and broadening {Gamma} in pionic deuterium have been determined in a high statistics study of the {pi}D(3p - 1s) X-ray transition using a high-resolution crystal spectrometer. The pionic deuterium shift will pro vide constraints for the pion-nucleon isospin scattering lengths extracted from measurements of shift and broadening in pionic hydrogen. The hadronic broadening is related to pion absorption and production at threshold. The results are epsilon = (-2356 {pm} 31)meV (repulsive) and {Gamma}1s = (1171+23/-49) meV yielding for the complex {pi}D scattering length a = [-(24.99 {pm} 0.33) + i (6.22+0.12/-0.26)]x10-3/m{pi}. From the imaginary part, the threshold parameter for pion production is obtained to be {alpha} = (251 +5/-11) {mu}b. This allows, in addition, and by using results from pion absorption in 3He at threshold, the determination of the effective couplings g0 and g1 for s-wave pion absorption on isoscalar and isovector NN pairs.
The atomic cascade in $mu^- p$ and $pi^- p$ atoms has been studied with the improved version of the extended cascade model in which new quantum mechanical calculations of the differential and integral cross sections of the elastic scattering, Stark t ransitions and Coulomb de-excitation have been included for the principal quantum number values $nle 8$ and the relative energies $E ge 0.01$ eV. The $X$-ray yields and kinetic energy distributions are compared with the experimental data.
Exclusive and kinematically complete high-statistics measurements of the double pionic fusion reaction $dd to ^4$He$pi^0pi^0$ have been performed in the energy range 0.8 - 1.4 GeV covering thus the region of the ABC effect, which denotes a pronounced low-mass enhancement in the $pipi$-invariant mass spectrum. The experiments were carried out with the WASA detector setup at COSY. Similar to the observation in the basic $pn to d pi^0pi^0$ reaction, the data reveal a correlation between the ABC effect and a resonance-like energy dependence in the total cross section. The maximum occurs at m=2.37 GeV + 2$m_N$, i.e. at the same position as in the basic reaction. The observed resonance width $Gamma approx$ 160 MeV can be understood from broadening due to Fermi motion of the nucleons in initial and final nuclei together with collision damping. Differential cross sections are described equally well by the hypothesis of a $pn$ resonance formation during the reaction process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا