ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity of wide band detectors to quintessential gravitons

66   0   0.0 ( 0 )
 نشر من قبل Massimo Giovannini
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There are no reasons why the energy spectra of the relic gravitons, amplified by the pumping action of the background geometry, should not increase at high frequencies. A typical example of this behavior are quintessential inflationary models where the slopes of the energy spectra can be either blue or mildly violet. In comparing the predictions of scenarios leading to blue and violet graviton spectra we face the problem of correctly deriving the sensitivities of the interferometric detectors. Indeed, the expression of the signal-to-noise ratio not only depends upon the noise power spectra of the detectors but also upon the spectral form of the signal and, therefore, one can reasonably expect that models with different spectral behaviors will produce different signal-to-noise ratios. By assuming monotonic (blue) spectra of relic gravitons we will give general expressions for the signal-to-noise ratio in this class of models. As an example we studied the case of quintessential gravitons. The minimum achievable sensitivity to $h^2_{0} Omega_{GW}$ of different pairs of detectors is computed, and compared with the theoretical expectations.



قيم البحث

اقرأ أيضاً

The sensitivity achievable by a pair of VIRGO detectors to stochastic and isotropic gravitational wave backgrounds produced in pre-big-bang models is discussed in view of the development of a second VIRGO interferometer. We describe a semi-analytical technique allowing to compute the signal-to-noise ratio for (monotonic or non-monotonic) logarithmic energy spectra of relic gravitons of arbitrary slope. We apply our results to the case of two correlated and coaligned VIRGO detectors and we compute their achievable sensitivities. We perform our calculations both for the usual case of minimal string cosmological scenario and in the case of a non-minimal scenario where a long dilaton dominated phase is present prior to the onset of the ordinary radiation dominated phase. In this framework, we investigate possible improvements of the achievable sensitivities by selective reduction of the thermal contributions (pendulum and pendulums internal modes) to the noise power spectra of the detectors. Since a reduction of the shot noise does not increase significantly the expected sensitivity of a VIRGO pair (in spite of the relative spatial location of the two detectors) our findings support the experimental efforts directed towards a substantial reduction of thermal noise.
We explore the possibility of baryogenesis in the framework of quintessential inflation. We focus on the model independent features of the underlying paradigm and demonstrate that the required baryon asymmetry can successfully be generated in this sc enario. To this effect, we use the effective field theory framework with desired terms in the Lagrangian necessary to mimic baryon number violation textit{`{a} la} spontaneous baryogenesis which can successfully evade Sakharovs requirement allowing us to generate the observed baryon asymmetry in the equilibrium process. Our estimates are independent of the underlying physical process responsible for baryon number violation. The underlying framework of quintessential inflation essentially includes the presence of kinetic regime after inflation which gives rise to blue spectrum of gravitational wave background at high frequencies. In addition to baryogenesis, we discuss the prospects of detection of relic gravitational wave background, in the future proposed missions, sticking to model independent treatment.
Intrinsic properties of the space itself and quantum fluctuations of its geometry are sufficient to provide a mechanism for the acceleration of cosmological expansion (dark energy effect). Applying Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy approa ch to self-consistent equations of one-loop quantum gravity, we found exact solutions that yield acceleration. The permanent creation and annihilation of virtual gravitons is not in exact balance because of the expansion of the Universe. The excess energy comes from the spontaneous process of graviton creation and is trapped by the background. It provides the macroscopic quantum effect of cosmic acceleration.
142 - D. Glavan 2013
We calculate the one-loop corrections from inflationary gravitons to the electromagnetic fields of a point charge and a point magnetic dipole on a locally de Sitter space background. Results are obtained both for an observer at rest in co-moving coor dinates, whose physical distance from the sources increases with the expanding universe, and for an observer at rest in static coordinates, whose physical distance from the sources is constant. The fields of both sources show the de Sitter analogs of the fractional $G/r^2$ corrections which occur in flat space, but there are also some fractional $G H^2$ corrections due to the scattering of virtual photons from the vast ensemble of infrared gravitons produced by inflation. The co-moving observer perceives the magnitude of the point charge to increase linearly with co-moving time and logarithmically with the co-moving position, however, the magnetic dipole shows only a negative logarithmic spatial variation. The static observer perceives no secular change of the point charge but he does report a secular enhancement of the magnetic dipole moment.
135 - Xiao-Yu Lu , Yu-Jie Tan , 2020
Time-delay interferometry is put forward to improve the signal-to-noise ratio of space-borne gravitational wave detectors by canceling the large laser phase noise with different combinations of measured data. Based on the Michelson data combination, the sensitivity function of the detector can be obtained by averaging the all-sky wave source positions. At present, there are two main methods to encode gravitational wave signal into detector. One is to adapt gravitational wave polarization angle depending on the arm orientation in the gravitational wave frame, and the other is to divide the gravitational wave signal into plus and cross polarizations in the detector frame. Although there are some attempts using the first method to provide the analytical expression of sensitivity function, only a semianalytical one could be obtained. Here, starting with the second method, we demonstrate the equivalence of both methods. First time to obtain the full analytical expression of sensitivity function, which provides a fast and accurate mean to evaluate and compare the performance of different space-borne detectors, such as LISA and TianQin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا