ﻻ يوجد ملخص باللغة العربية
Time-delay interferometry is put forward to improve the signal-to-noise ratio of space-borne gravitational wave detectors by canceling the large laser phase noise with different combinations of measured data. Based on the Michelson data combination, the sensitivity function of the detector can be obtained by averaging the all-sky wave source positions. At present, there are two main methods to encode gravitational wave signal into detector. One is to adapt gravitational wave polarization angle depending on the arm orientation in the gravitational wave frame, and the other is to divide the gravitational wave signal into plus and cross polarizations in the detector frame. Although there are some attempts using the first method to provide the analytical expression of sensitivity function, only a semianalytical one could be obtained. Here, starting with the second method, we demonstrate the equivalence of both methods. First time to obtain the full analytical expression of sensitivity function, which provides a fast and accurate mean to evaluate and compare the performance of different space-borne detectors, such as LISA and TianQin.
General Relativity predicts only two tensor polarization modes for gravitational waves while at most six possible polarization modes of gravitational waves are allowed in the general metric theory of gravity. The number of polarization modes is total
The basic constituent of many space-borne gravitational missions, in particular for interferometric gravitational waves detectors, is the so-called link made out of a satellite sending an electromagnetic beam to a second satellite. We illustrate how,
We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described
Employing the Fisher information matrix analysis, we estimate parameter errors of TianQin and LISA for monochromatic gravitational waves. With the long-wavelength approximation we derive analytical formulas for the parameter estimation errors. We sep
(abridged) The signal-to-noise ratio (SNR) is used in gravitational-wave observations as the basic figure of merit for detection confidence and, together with the Fisher matrix, for the amount of physical information that can be extracted from a dete