ﻻ يوجد ملخص باللغة العربية
Quantum radiation properties of Dirac particles in general nonstationary black holes in the general case is investigated by both using the method of generalized tortoise coordinate transformation and considering the asymptotic behaviors of both the first and second order forms of Dirac equations near the event horizon. It is generally shown that the temperature and shape of event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is missing in that of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in non-thermal radiation for general nonstationary black holes.
This paper has been withdrawn by the authors. Quantum radiative characteristics of 4D semi-classical nonstationary black holes in the general case are investigated by using the method of generalized tortoise coordinate transformation. It is general
Quantum radiative characteristics of slowly varying nonstationary Kerr-Newman black holes are investigated by using the method of generalized tortoise coordinate transformation. It is shown that the temperature and the shape of the event horizon of t
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evol
In this work, new solutions for regular black holes that have multihorizons are proposed. These are formed by the direct product of solutions already published in the literature, which are described through the coupling of gravity with nonlinear elec
Dirac cloud is in absence in general relativity since the superradiance mechanism fails to work for Dirac fields. For the first time we find a mechanism to support Dirac clouds in modified gravity. We study quasi bound states of Dirac particles aroun