ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Radiation of General Nonstationary Black Holes

102   0   0.0 ( 0 )
 نشر من قبل Jia-Chen Hua
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper has been withdrawn by the authors. Quantum radiative characteristics of 4D semi-classical nonstationary black holes in the general case are investigated by using the method of generalized tortoise coordinate transformation. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we discover that there is a certain relationship that is ignored before between thermal radiation and non-thermal radiation of black holes, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of particles in non-thermal radiation for 4D semi-classical nonstationary black holes. Also, we show that the deduced general results can be applied to different concrete conditions.



قيم البحث

اقرأ أيضاً

Quantum radiation properties of Dirac particles in general nonstationary black holes in the general case is investigated by both using the method of generalized tortoise coordinate transformation and considering the asymptotic behaviors of both the f irst and second order forms of Dirac equations near the event horizon. It is generally shown that the temperature and shape of event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is missing in that of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in non-thermal radiation for general nonstationary black holes.
Quantum radiative characteristics of slowly varying nonstationary Kerr-Newman black holes are investigated by using the method of generalized tortoise coordinate transformation. It is shown that the temperature and the shape of the event horizon of t his kind of black holes depend on the time and the angle. Further, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of particles in non-thermal radiation for slowly varying nonstationary Kerr-Newman black holes. Also, we show that the deduced general results can be degenerated to the known conclusion of stationary Kerr-Newman black holes.
We investigate wave optical imaging of black holes with Hawking radiation. The spatial correlation function of Hawking radiation is expressed in terms of transmission and reflection coefficients for scalar wave modes and evaluated by taking summation over angular qunatum numbers numerically for the Unruh-Hawking state of the Kerr-de Sitter black hole. Then wave optical images of evaporating black hole are obtained by Fourier transformation of the spatial correlation function. For short wavelength, the image of the black hole with the outgoing mode of the Unruh-Hawking state looks like a star with its surface is given by the photon sphere. It is found that interference between incoming modes from the cosmological horizon and reflected modes due to scattering of the black hole can enhance brightness of images in the vicinity of the photon sphere. For long wavelenth, whole field of view becomes bright and emission region of Hawking radiation cannot be identifed.
81 - Enrico Barausse 2019
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evol ution of black hole binary systems, providing a qualitative physical interpretation of each one of them. I will also briefly describe how these phases would be modified if gravitation were described by a theory extending or deforming General Relativity, or if the binary components turned out to be more exotic compact objects than black holes.
In this work, new solutions for regular black holes that have multihorizons are proposed. These are formed by the direct product of solutions already published in the literature, which are described through the coupling of gravity with nonlinear elec trodynamics. We analyze the regularity of the spacetime, the electric field, and the energy conditions of each solution. The strong energy condition is always violated within the event horizon in all solutions, while other energy conditions depend on the ratio between extreme charges of isolated solutions. For solutions with four horizons, we present two examples, Bardeen-Culetu and Balart-Culetu. Both solutions are regular, but the first do not satisfy all the energy conditions, except the strong, because it has an extreme charge ratio of 1.57581, great value. The second solution, on the other hand, can satisfy all other energy conditions, except the SEC, and has an extreme charge ratio of 1.09915, a value that allows this feature. Its also proposed a regular solution with up to six horizons, Balart-Culetu-Dymnikova, where, for a given charge value, we can verify that it satisfies all energy conditions, except the strong one. This was possible due to the ratio between extreme charges that are neither too high nor too close. We propose solutions with any number of horizons. We show that points where $-F(r)$ has a non null minimum represent a cusp in the Lagrangian $-L(F)$. We also show an example of multihorizon solution with magnetic charge. Multihorizon solutions may exhibit exotic properties, such as negative energy density, or violation of energy conditions, but which can be circumvented with a selected choice of customized solutions and extreme charge values, resulting in regular black hole solutions that satisfy all energy conditions, less the strong.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا