ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

69   0   0.0 ( 0 )
 نشر من قبل Emanuel Gallo
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in $n$-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as, the Gauss-Bonne



قيم البحث

اقرأ أيضاً

We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv ature-couplings the resulting scalarized black hole solutions are nonlinearly stable. For such small couplings, we show that an elliptic region forms inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that this region remains censored from asymptotic view. However, for coupling values superextremal relative to a given black hole mass, an elliptic region forms exterior to the horizon, implying the exterior Cauchy problem is ill-posed in this regime.
We investigate the presence of a black hole black string phase transition in Einstein Gauss Bonnet (EGB) gravity in the large dimension limit. The merger point is the static spacetime connecting the black string phase with the black hole phase. We co nsider several ranges of the Gauss-Bonnet parameter. We find that there is a range when the Gauss-Bonnet corrections are subordinate to the Einstein gravity terms in the large dimension limit, and yet the merger point geometry does not approach a black hole away from the neck. We cannot rule out a topology changing phase transition as argued by Kol. However as the merger point geometry does not approach the black hole geometry asymptotically it is not obvious that the transition is directly to a black hole phase. We also demonstrate that for another range of the Gauss-Bonnet parameter, the merger point geometry approaches the black hole geometry asymptotically when a certain parameter depending on the Gauss-Bonnet parameter $alpha$ and on the parameters in the Einstein-Gauss-Bonnet black hole metric is small enough.
In this paper, we investigate the four-dimensional Einstein-Gauss-Bonnet black hole. The thermodynamic variables and equations of state of black holes are obtained in terms of a new parameterization. We discuss a formulation of the van der Waals equa tion by studying the effects of the temperature on P-V isotherms. We show the influence of the Cauchy horizon on the thermodynamic parameters. We prove by different methods, that the black hole entropy obey area law (plus logarithmic term that depends on the Gauss-Bonnet coupling {alpha}). We propose a physical meaning for the logarithmic correction to the area law. This work can be extended to the extremal EGB black hole, in that case, we study the relationship between compressibility factor, specific heat and the coupling {alpha}.
We study the post-Newtonian dynamics of black hole binaries in Einstein-scalar-Gauss-Bonnet gravity theories. To this aim we build static, spherically symmetric black hole solutions at fourth order in the Gauss-Bonnet coupling $alpha$. We then skelet onize these solutions by reducing them to point particles with scalar field-dependent masses, showing that this procedure amounts to fixing the Wald entropy of the black holes during their slow inspiral. The cosmological value of the scalar field plays a crucial role in the dynamics of the binary. We compute the two-body Lagrangian at first post-Newtonian order and show that no regularization procedure is needed to obtain the Gauss-Bonnet contributions to the fields, which are finite. We illustrate the power of our approach by Pade-resumming the so-called sensitivities, which measure the coupling of the skeletonized body to the scalar field, for some specific theories of interest.
We study the dynamics of black holes in Einstein-scalar-Gauss-Bonnet theories that exhibit spontaneous black hole scalarization using recently introduced methods for solving the full, non-perturbative equations of motion. For one sign of the coupling parameter, non-spinning vacuum black holes are unstable to developing scalar hair, while for the other, instability only sets in for black holes with sufficiently large spin. We study scalarization in both cases, demonstrating that there is a range of parameter space where the theory maintains hyperbolic evolution and for which the instability saturates in a scalarized black hole that is stable without symmetry assumptions. However, this parameter space range is significantly smaller than the range for which stationary scalarized black hole solutions exist. We show how different choices for the subleading behavior of the Gauss-Bonnet coupling affect the dynamics of the instability and the final state, or lack thereof. Finally, we present mergers of binary black holes and demonstrate the imprint of the scalar hair in the gravitational radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا