ﻻ يوجد ملخص باللغة العربية
We study the post-Newtonian dynamics of black hole binaries in Einstein-scalar-Gauss-Bonnet gravity theories. To this aim we build static, spherically symmetric black hole solutions at fourth order in the Gauss-Bonnet coupling $alpha$. We then skeletonize these solutions by reducing them to point particles with scalar field-dependent masses, showing that this procedure amounts to fixing the Wald entropy of the black holes during their slow inspiral. The cosmological value of the scalar field plays a crucial role in the dynamics of the binary. We compute the two-body Lagrangian at first post-Newtonian order and show that no regularization procedure is needed to obtain the Gauss-Bonnet contributions to the fields, which are finite. We illustrate the power of our approach by Pade-resumming the so-called sensitivities, which measure the coupling of the skeletonized body to the scalar field, for some specific theories of interest.
Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modelling of the expected signals in extensions of General Relativity. In this paper we model the
We study the dynamics of black holes in Einstein-scalar-Gauss-Bonnet theories that exhibit spontaneous black hole scalarization using recently introduced methods for solving the full, non-perturbative equations of motion. For one sign of the coupling
We construct black hole solutions with spin-induced scalarization in a class of models where a scalar field is quadratically coupled to the topological Gauss-Bonnet term. Starting from the tachyonically unstable Kerr solutions, we obtain families of
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv
In this paper, we investigate the four-dimensional Einstein-Gauss-Bonnet black hole. The thermodynamic variables and equations of state of black holes are obtained in terms of a new parameterization. We discuss a formulation of the van der Waals equa