ﻻ يوجد ملخص باللغة العربية
The Plebanski-Demianski metric, and those that can be obtained from it by taking coordinate transformations in certain limits, include the complete family of space-times of type D with an aligned electromagnetic field and a possibly non-zero cosmological constant. Starting with a new form of the line element which is better suited both for physical interpretation and for identifying different subfamilies, we review this entire family of solutions. Our metric for the expanding case explicitly includes two parameters which represent the acceleration of the sources and the twist of the repeated principal null congruences, the twist being directly related to both the angular velocity of the sources and their NUT-like properties. The non-expanding type D solutions are also identified. All special cases are derived in a simple and transparent way.
We show that the Plebanski-Demianski spacetime persists as a solution of General Relativity when the theory is supplemented with both, a conformally coupled scalar theory and with quadratic curvature corrections. The quadratic terms are of two types
The aim of this work is to describe the complete family of non-expanding Plebanski-Demianski type D space-times and to present their possible interpretation. We explicitly express the most general form of such (electro)vacuum solutions with any cosmo
An infinite family of new exact solutions of the Einstein vacuum equations for static and axially symmetric spacetimes is presented. All the metric functions of the solutions are explicitly computed and the obtained expressions are simply written in
Using the action for the instanton representation of Plebanski gravity (IRPG), we construct minisuperspace solutions restricted to diagonal variables. We have treated the Euclidean signature case with zero cosmological constant, depicting a gravitati
We take a closer and new look at the effects of tidal forces on the free fall of a quantum particle inside a spherically symmetric gravitational field. We derive the corresponding Schrodinger equation for the particle by starting from the fully relat