ﻻ يوجد ملخص باللغة العربية
An infinite family of new exact solutions of the Einstein vacuum equations for static and axially symmetric spacetimes is presented. All the metric functions of the solutions are explicitly computed and the obtained expressions are simply written in terms of oblate spheroidal coordinates. Furthermore, the solutions are asymptotically flat and regular everywhere, as it is shown by computing all the curvature scalars. These solutions describe an infinite family of thin dust disks with a central inner edge, whose energy densities are everywhere positive and well behaved, in such a way that their energy-momentum tensor are in fully agreement with all the energy conditions. Now, although the disks are of infinite extension, all of them have finite mass. The superposition of the first member of this family with a Schwarzschild black hole was presented previously [G. A. Gonzalez and A. C. Gutierrez-Pi~neres, arXiv: 0811.3002v1 (2008)], whereas that in a subsequent paper a detailed analysis of the corresponding superposition for the full family will be presented.
A detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin disks without radial pressure. We find a general constraint over the counterrotating tangential velocities needed to
In this work we study static perfect fluid stars in 2+1 dimensions with an exterior BTZ spacetime. We found the general expression for the metric coefficients as a function of the density and pressure of the fluid. We found the conditions to have reg
The derivation of conservation laws and invariant functions is an essential procedure for the investigation of nonlinear dynamical systems. In this study we consider a two-field cosmological model with scalar fields defined in the Jordan frame. In pa
A Riemann problem with prescribed initial conditions will produce one of three possible wave patterns corresponding to the propagation of the different discontinuities that will be produced once the system is allowed to relax. In general, when solvin
We extend our approach for the exact solution of the Riemann problem in relativistic hydrodynamics to the case in which the fluid velocity has components tangential to the initial discontinuity. As in one-dimensional flows, we here show that the wave