It is shown that the internal solution of the Schwarzschild type in the Relativistic Theory of Gravitation does not lead to an {infinite pressure} inside a body as it holds in the General Theory of Relativity. This happens due to the graviton rest ma
ss, because of the stopping of the time slowing down.
Today we have a solid, if incomplete, physical picture of how inertia is created in the standard model. We know that most of the visible baryonic `mass in the Universe is due to gluonic back-reaction on accelerated quarks, the latter of which attribu
te their own inertia to a coupling with the Higgs field -- a process that elegantly and self-consistently also assigns inertia to several other particles. But we have never had a physically viable explanation for the origin of rest-mass energy, in spite of many attempts at understanding it towards the end of the nineteenth century, culminating with Einsteins own landmark contribution in his Annus Mirabilis. Here, we introduce to this discussion some of the insights we have garnered from the latest cosmological observations and theoretical modeling to calculate our gravitational binding energy with that portion of the Universe to which we are causally connected, and demonstrate that this energy is indeed equal to mc^2 when the inertia m is viewed as a surrogate for gravitational mass.
Taking up four model universes we study the behaviour and contribution of dark energy to the accelerated expansion of the universe, in the modified scale covariant theory of gravitation. Here, it is seen that though this modified theory may be a caus
e of the accelerated expansion it cannot totally outcast the contribution of dark energy in causing the accelerated expansion. In one case the dark energy is found to be the sole cause of the accelerated expansion. The dark energy contained in these models come out to be of the $Lambda$CDM type and quintessence type comparable to the modern observations. Some of the models originated with a big bang, the dark energy being prevalent inside the universe before the evolution of this era. One of the models predicts big rip singularity, though at a very distant future. It is interestingly found that the interaction between the dark energy and the other part of the universe containing different matters is enticed and enhanced by the gauge function $phi(t)$ here.
It is shown that, in the framework of Relativistic Theory of Gravitation with massive graviton, gravitational waves, due to the causality condition, do not bear negative energy flows.
A consequence of adopting a modified gravitational theory (MOG) for the aLIGO GW190521 gravitational wave detection involving binary black hole sources is to fit the aLIGO strain and chirp data with lower mass, compact coalescing binary systems such
as neutron star-neutron star (NS-NS), black hole - neutron star (BH-NS), and black hole-black hole (BH-BH) systems. In MOG BH - BH component masses can be smaller than the component masses $m_1=85M_odot$ and $m_2=66M_odot$ inferred from the aLIGO GW190521 gravitational wave event. This reduces the mass of the final remnant mass $M_f=150M_odot$ and allows the primary, secondary and final remnant masses of the black holes to be formed by conventional stellar collapse models.