ﻻ يوجد ملخص باللغة العربية
Today we have a solid, if incomplete, physical picture of how inertia is created in the standard model. We know that most of the visible baryonic `mass in the Universe is due to gluonic back-reaction on accelerated quarks, the latter of which attribute their own inertia to a coupling with the Higgs field -- a process that elegantly and self-consistently also assigns inertia to several other particles. But we have never had a physically viable explanation for the origin of rest-mass energy, in spite of many attempts at understanding it towards the end of the nineteenth century, culminating with Einsteins own landmark contribution in his Annus Mirabilis. Here, we introduce to this discussion some of the insights we have garnered from the latest cosmological observations and theoretical modeling to calculate our gravitational binding energy with that portion of the Universe to which we are causally connected, and demonstrate that this energy is indeed equal to mc^2 when the inertia m is viewed as a surrogate for gravitational mass.
It has been shown beyond reasonable doubt that the majority (about 95%) of the total energy budget of the universe is given by the dark components, namely Dark Matter and Dark Energy. What constitutes these components remains to be satisfactorily und
We study the emergence of entropy in gravitational production of dark matter particles, ultra light scalars minimally coupled to gravity and heavier fermions, from inflation to radiation domination (RD). Initial conditions correspond to dark matter f
One of the most ubiquitous features of quantum theories is the existence of zero-point fluctuations in their ground states. For massive quantum fields, these fluctuations decouple from infrared observables in ordinary field theories. However, there i
In this paper we investigate the cosmological dynamics of geometric inflation by means of the tools of the dynamical systems theory. We focus in the study of two explicit models where it is possible to sum the infinite series of higher curvature corr
We revisit a collapsing pre-big-bang model of the universe to study with detail the non-perturbative quantum dynamics of the dispersal scalar field whose dynamics becomes from the dynamical foliation of test massless scalar field $phi$ on a 5D Rieman