ﻻ يوجد ملخص باللغة العربية
The classical electromagnetic and gravitomagnetic fields in the vacuum, in (3+2) dimensions, described by the Maxwell-Nordstrom equations, are quantized. These equations are rederived from the field tensor which follows from a five-dimensional form of the Dirac equation. The electromagnetic field depends on the customary time t, and the hypothetical gravitomagnetic field depends on the second time variable u. The total field energy is identified with the component T44 of the five-dimensional energy-stress tensor of the electromagnetic and gravitomagnetic fields. In the ground state, the electromagnetic field and the gravitomagnetic field energies cancel out. The quanta of the gravitomagnetic field have spin 1.
In this article, we quantize the Maxwell (massless spin one) de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO$_0(2,4)$ group and consequently under the de Sitter group. We obtain a new de Sitter invariant
We study the fall-off behaviour of test electromagnetic fields in higher dimensions as one approaches infinity along a congruence of expanding null geodesics. The considered backgrounds are Einstein spacetimes including, in particular, (asymptoticall
Geometrical symmetry in a spacetime can generate test solutions to the Maxwell equation. We demonstrate that the source-free Maxwell equation is satisfied by any generator of spacetime self-similarity---a proper homothetic vector---identified with a
We obtain a full characterization of Einstein-Maxwell $p$-form solutions $(boldsymbol{g},boldsymbol{F})$ in $D$-dimensions for which all higher-order corrections vanish identically. These thus simultaneously solve a large class of Lagrangian theories
(abbreviated) We study quantized solutions of WdW equation describing a closed FRW universe with a $Lambda $ term and a set of massless scalar fields. We show that when $Lambda ll 1$ in the natural units and the standard $in$-vacuum state is consider