ﻻ يوجد ملخص باللغة العربية
Geometrical symmetry in a spacetime can generate test solutions to the Maxwell equation. We demonstrate that the source-free Maxwell equation is satisfied by any generator of spacetime self-similarity---a proper homothetic vector---identified with a vector potential of the Maxwell theory. The test fields obtained in this way share the scale symmetry of the background.
We obtain a full characterization of Einstein-Maxwell $p$-form solutions $(boldsymbol{g},boldsymbol{F})$ in $D$-dimensions for which all higher-order corrections vanish identically. These thus simultaneously solve a large class of Lagrangian theories
We study the fall-off behaviour of test electromagnetic fields in higher dimensions as one approaches infinity along a congruence of expanding null geodesics. The considered backgrounds are Einstein spacetimes including, in particular, (asymptoticall
We propose a generalizing gauge-invariant model of propagating torsion which couples to the Maxwell field and to charged particles. As a result we have an Abelian gauge invariant action which leads to a theory with nonzero torsion and which is consistent with available experimental data.
We introduce an improved model that links the frequency shift of the $^{133}text{Cs}$ hyperfine Zeeman transitions $vert F = 3, m_F> longleftrightarrow vert F = 4, m_F >$ to the Lorentz-violating Standard-Model Extension (SME) coefficients of the pro
The classical electromagnetic and gravitomagnetic fields in the vacuum, in (3+2) dimensions, described by the Maxwell-Nordstrom equations, are quantized. These equations are rederived from the field tensor which follows from a five-dimensional form o