ﻻ يوجد ملخص باللغة العربية
This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Zm and binary low-density parity-check (LDPC) codes, assuming belief propagation decoding on memoryless channels. A concrete framework is presented, admitting systematic searches for new bounds. Two noise measures are considered: the Bhattacharyya noise parameter and the soft bit value for a maximum a posteriori probability (MAP) decoder on the uncoded channel. For Zm LDPC codes, an iterative m-dimensional bound is derived for m-ary-input/symmetric-output channels, which gives a sufficient stability condition for Zm LDPC codes and is complemented by a matched necessary stability condition introduced herein. Applications to coded modulation and to codes with non-equiprobable distributed codewords are also discussed. For binary codes, two new lower bounds are provided for symmetric channels, including a two-dimensional iterative bound and a one-dimensional non-iterative bound, the latter of which is the best known bound that is tight for binary symmetric channels (BSCs), and is a strict improvement over the bound derived by the channel degradation argument. By adopting the reverse channel perspective, upper and lower bounds on the decodable Bhattacharyya noise parameter are derived for non-symmetric channels, which coincides with the existing bound for symmetric channels.
We consider the effect of LLR saturation on belief propagation decoding of low-density parity-check codes. Saturation occurs universally in practice and is known to have a significant effect on error floor performance. Our focus is on threshold analy
We consider near maximum-likelihood (ML) decoding of short linear block codes. In particular, we propose a novel decoding approach based on neural belief propagation (NBP) decoding recently introduced by Nachmani et al. in which we allow a different
We introduce a two-stage decimation process to improve the performance of neural belief propagation (NBP), recently introduced by Nachmani et al., for short low-density parity-check (LDPC) codes. In the first stage, we build a list by iterating betwe
Motivated by recently derived fundamental limits on total (transmit + decoding) power for coded communication with VLSI decoders, this paper investigates the scaling behavior of the minimum total power needed to communicate over AWGN channels as the
A low-density parity-check (LDPC) code is a linear block code described by a sparse parity-check matrix, which can be efficiently represented by a bipartite Tanner graph. The standard iterative decoding algorithm, known as belief propagation, passes