ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Total-Power Capacity of Regular-LDPC Codes with Iterative Message-Passing Decoders

162   0   0.0 ( 0 )
 نشر من قبل Karthik Ganesan
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recently derived fundamental limits on total (transmit + decoding) power for coded communication with VLSI decoders, this paper investigates the scaling behavior of the minimum total power needed to communicate over AWGN channels as the target bit-error-probability tends to zero. We focus on regular-LDPC codes and iterative message-passing decoders. We analyze scaling behavior under two VLSI complexity models of decoding. One model abstracts power consumed in processing elements (node model), and another abstracts power consumed in wires which connect the processing elements (wire model). We prove that a coding strategy using regular-LDPC codes with Gallager-B decoding achieves order-optimal scaling of total power under the node model. However, we also prove that regular-LDPC codes and iterative message-passing decoders cannot meet existing fundamental limits on total power under the wire model. Further, if the transmit energy-per-bit is bounded, total power grows at a rate that is worse than uncoded transmission. Complementing our theoretical results, we develop detailed physical models of decoding implementations using post-layout circuit simulations. Our theoretical and numerical results show that approaching fundamental limits on total power requires increasing the complexity of both the code design and the corresponding decoding algorithm as communication distance is increased or error-probability is lowered.



قيم البحث

اقرأ أيضاً

This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Zm and binary low-density parity-check (LDPC) codes, assuming belief propagation decoding on memoryless channels. A concrete framework is presented, admitting systematic searches for new bounds. Two noise measures are considered: the Bhattacharyya noise parameter and the soft bit value for a maximum a posteriori probability (MAP) decoder on the uncoded channel. For Zm LDPC codes, an iterative m-dimensional bound is derived for m-ary-input/symmetric-output channels, which gives a sufficient stability condition for Zm LDPC codes and is complemented by a matched necessary stability condition introduced herein. Applications to coded modulation and to codes with non-equiprobable distributed codewords are also discussed. For binary codes, two new lower bounds are provided for symmetric channels, including a two-dimensional iterative bound and a one-dimensional non-iterative bound, the latter of which is the best known bound that is tight for binary symmetric channels (BSCs), and is a strict improvement over the bound derived by the channel degradation argument. By adopting the reverse channel perspective, upper and lower bounds on the decodable Bhattacharyya noise parameter are derived for non-symmetric channels, which coincides with the existing bound for symmetric channels.
We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabili ties and is therefore soft in nature. However, the messages exchanged by the component decoders are binary (hard) messages, which significantly reduces the decoder data flow. The exchanged binary messages are obtained by combining the channel reliability with the BDD decoder output reliabilities, properly conveyed by a scaling factor applied to the BDD decisions. We perform a density evolution analysis for generalized low-density parity-check (GLDPC) code ensembles and spatially coupled GLDPC code ensembles, from which the scaling factors of the iBDD-SR for product and staircase codes, respectively, can be obtained. For the white additive Gaussian noise channel, we show performance gains up to $0.29$ dB and $0.31$ dB for product and staircase codes compared to conventional iterative BDD (iBDD) with the same decoder data flow. Furthermore, we show that iBDD-SR approaches the performance of ideal iBDD that prevents miscorrections.
Non-uniform message quantization techniques such as reconstruction-computation-quantization (RCQ) improve error-correction performance and decrease hardware complexity of low-density parity-check (LDPC) decoders that use a flooding schedule. Layered MinSum RCQ (L-msRCQ) enables message quantization to be utilized for layered decoders and irregular LDPC codes. We investigate field-programmable gate array (FPGA) implementations of L-msRCQ decoders. Three design methods for message quantization are presented, which we name the Lookup, Broadcast, and Dribble methods. The decoding performance and hardware complexity of these schemes are compared to a layered offset MinSum (OMS) decoder. Simulation results on a (16384, 8192) protograph-based raptor-like (PBRL) LDPC code show that a 4-bit L-msRCQ decoder using the Broadcast method can achieve a 0.03 dB improvement in error-correction performance while using 12% fewer registers than the OMS decoder. A Broadcast-based 3-bit L-msRCQ decoder uses 15% fewer lookup tables, 18% fewer registers, and 13% fewer routed nets than the OMS decoder, but results in a 0.09 dB loss in performance.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The propose d algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.
We propose a novel soft-aided iterative decoding algorithm for product codes (PCs). The proposed algorithm, named iterative bounded distance decoding with combined reliability (iBDD-CR), enhances the conventional iterative bounded distance decoding ( iBDD) of PCs by exploiting some level of soft information. In particular, iBDD-CR can be seen as a modification of iBDD where the hard decisions of the row and column decoders are made based on a reliability estimate of the BDD outputs. The reliability estimates are derived using extrinsic message passing for generalized low-density-parity check (GLDPC) ensembles, which encompass PCs. We perform a density evolution analysis of iBDD-CR for transmission over the additive white Gaussian noise channel for the GLDPC ensemble. We consider both binary transmission and bit-interleaved coded modulation with quadrature amplitude modulation.We show that iBDD-CR achieves performance gains up to $0.51$ dB compared to iBDD with the same internal decoder data flow. This makes the algorithm an attractive solution for very high-throughput applications such as fiber-optic communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا