ترغب بنشر مسار تعليمي؟ اضغط هنا

The Completeness of Propositional Resolution: A Simple and Constructive<br> Proof

278   0   0.0 ( 0 )
 نشر من قبل Jean Gallier
 تاريخ النشر 2006
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jean Gallier




اسأل ChatGPT حول البحث

It is well known that the resolution method (for propositional logic) is complete. However, completeness proofs found in the literature use an argument by contradiction showing that if a set of clauses is unsatisfiable, then it must have a resolution refutation. As a consequence, none of these proofs actually gives an algorithm for producing a resolution refutation from an unsatisfiable set of clauses. In this note, we give a simple and constructive proof of the completeness of propositional resolution which consists of an algorithm together with a proof of its correctness.



قيم البحث

اقرأ أيضاً

In this paper we present a proof system that operates on graphs instead of formulas. Starting from the well-known relationship between formulas and cographs, we drop the cograph-conditions and look at arbitrary undirected) graphs. This means that we lose the tree structure of the formulas corresponding to the cographs, and we can no longer use standard proof theoretical methods that depend on that tree structure. In order to overcome this difficulty, we use a modular decomposition of graphs and some techniques from deep inference where inference rules do not rely on the main connective of a formula. For our proof system we show the admissibility of cut and a generalization of the splitting property. Finally, we show that our system is a conservative extension of multiplicative linear logic with mix, and we argue that our graphs form a notion of generalized connective.
106 - Roly Perera , James Cheney 2016
We present a formalisation in Agda of the theory of concurrent transitions, residuation, and causal equivalence of traces for the pi-calculus. Our formalisation employs de Bruijn indices and dependently-typed syntax, and aligns the proved transitions proposed by Boudol and Castellani in the context of CCS with the proof terms naturally present in Agdas representation of the labelled transition relation. Our main contributions are proofs of the diamond lemma for the residuals of concurrent transitions and a formal definition of equivalence of traces up to permutation of transitions. In the pi-calculus transitions represent propagating binders whenever their actions involve bound names. To accommodate these cases, we require a more general diamond lemma where the target states of equivalent traces are no longer identical, but are related by a braiding that rewires the bound and free names to reflect the particular interleaving of events involving binders. Our approach may be useful for modelling concurrency in other languages where transitions carry metadata sensitive to particular interleavings, such as dynamically allocated memory addresses.
Separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are abstract because they are independent of any particular concrete memory model. Their assertion languages, called proposition al abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hou et al to handle Calcagno et als original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness. We present a theorem prover based on our labelled calculus for these propositional abstract separation logics.
Normalization fails in type theory with an impredicative universe of propositions and a proof-irrelevant propositional equality. The counterexample to normalization is adapted from Girards counterexample against normalization of System F equipped wit h a decider for type equality. It refutes Werners normalization conjecture [LMCS 2008].
We present a recursive formulation of the Horn algorithm for deciding the satisfiability of propositional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for simple proofs of its main properties. By defining t he algorithm as a recursive function (computing a least fixed-point), we achieve: 1) a concise, yet rigorous, formalisation; 2) a clear form of visualising executions of the algorithm, step-by-step; 3) precise results, simple to state and with clean inductive proofs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا