ترغب بنشر مسار تعليمي؟ اضغط هنا

Proof-relevant $pi$-calculus: a constructive account of concurrency and causality

107   0   0.0 ( 0 )
 نشر من قبل Roly Perera
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a formalisation in Agda of the theory of concurrent transitions, residuation, and causal equivalence of traces for the pi-calculus. Our formalisation employs de Bruijn indices and dependently-typed syntax, and aligns the proved transitions proposed by Boudol and Castellani in the context of CCS with the proof terms naturally present in Agdas representation of the labelled transition relation. Our main contributions are proofs of the diamond lemma for the residuals of concurrent transitions and a formal definition of equivalence of traces up to permutation of transitions. In the pi-calculus transitions represent propagating binders whenever their actions involve bound names. To accommodate these cases, we require a more general diamond lemma where the target states of equivalent traces are no longer identical, but are related by a braiding that rewires the bound and free names to reflect the particular interleaving of events involving binders. Our approach may be useful for modelling concurrency in other languages where transitions carry metadata sensitive to particular interleavings, such as dynamically allocated memory addresses.



قيم البحث

اقرأ أيضاً

Formalising the pi-calculus is an illuminating test of the expressiveness of logical frameworks and mechanised metatheory systems, because of the presence of name binding, labelled transitions with name extrusion, bisimulation, and structural congrue nce. Formalisations have been undertaken in a variety of systems, primarily focusing on well-studied (and challenging) properties such as the theory of process bisimulation. We present a formalisation in Agda that instead explores the theory of concurrent transitions, residuation, and causal equivalence of traces, which has not previously been formalised for the pi-calculus. Our formalisation employs de Bruijn indices and dependently-typed syntax, and aligns the proved transitions proposed by Boudol and Castellani in the context of CCS with the proof terms naturally present in Agdas representation of the labelled transition relation. Our main contributions are proofs of the diamond lemma for residuation of concurrent transitions and a formal definition of equivalence of traces up to permutation of transitions.
We study the relation between process calculi that differ in their either synchronous or asynchronous interaction mechanism. Concretely, we are interested in the conditions under which synchronous interaction can be implemented using just asynchronou s interactions in the pi-calculus. We assume a number of minimal conditions referring to the work of Gorla: a good encoding must be compositional and preserve and reflect computations, deadlocks, divergence, and success. Under these conditions, we show that it is not possible to encode synchronous interactions without introducing additional causal dependencies in the translation.
277 - Jean Gallier 2006
It is well known that the resolution method (for propositional logic) is complete. However, completeness proofs found in the literature use an argument by contradiction showing that if a set of clauses is unsatisfiable, then it must have a resolution refutation. As a consequence, none of these proofs actually gives an algorithm for producing a resolution refutation from an unsatisfiable set of clauses. In this note, we give a simple and constructive proof of the completeness of propositional resolution which consists of an algorithm together with a proof of its correctness.
257 - matthew hennessy 2010
We develop a version of the pi-calculus, picost, where channels are interpreted as resources which have costs associated with them. Code runs under the financial responsibility of owners; they must pay to use resources, but may profit by providing th em. We provide a proof methodology for processes described in picost based on bisimulations. The underlying behavioural theory is justified via a contextual characterisation. We also demonstrate its usefulness via examples.
Pitts and Starks $ u$-calculus is a paradigmatic total language for studying the problem of contextual equivalence in higher-order languages with name generation. Models for the $ u$-calculus that validate basic equivalences concerning names may be c onstructed using functor categories or nominal sets, with a dynamic allocation monad used to model computations that may allocate fresh names. If recursion is added to the language and one attempts to adapt the models from (nominal) sets to (nominal) domains, however, the direct-style construction of the allocation monad no longer works. This issue has previously been addressed by using a monad that combines dynamic allocation with continuations, at some cost to abstraction. This paper presents a direct-style model of a $ u$-calculus-like language with recursion using the novel framework of proof-relevant logical relations, in which logical relations also contain objects (or proofs) demonstrating the equivalence of (the semantic counterparts of) programs. Apart from providing a fresh solution to an old problem, this work provides an accessible setting in which to introduce the use of proof-relevant logical relations, free of the additional complexities associated with their use for more sophisticated languages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا