ﻻ يوجد ملخص باللغة العربية
In this paper, we give several simple methods for drawing a whole rational surface (without base points) as several Bezier patches. The first two methods apply to surfaces specified by triangular control nets and partition the real projective plane RP2 into four and six triangles respectively. The third method applies to surfaces specified by rectangular control nets and partitions the torus RP1 X RP1 into four rectangular regions. In all cases, the new control nets are obtained by sign flipping and permutation of indices from the original control net. The proofs that these formulae are correct involve very little computations and instead exploit the geometry of the parameter space (RP2 or RP1 X RP1). We illustrate our method on some classical examples. We also propose a new method for resolving base points using a simple ``blowing up technique involving the computation of ``resolved control nets.
In this paper, we investigate the efficiency of various strategies for subdividing polynomial triangular surface patches. We give a simple algorithm performing a regular subdivision in four calls to the standard de Casteljau algorithm (in its subdivi
In this paper we address the issue of designing developable surfaces with Bezier patches. We show that developable surfaces with a polynomial edge of regression are the set of developable surfaces which can be constructed with Aumanns algorithm. We a
This paper introduces simple analytical formulas for the grid impedance of electrically dense arrays of square patches and for the surface impedance of high-impedance surfaces based on the dense arrays of metal strips or square patches over ground pl
In this paper we review the derivation of implicit equations for non-degenerate quadric patches in rational Bezier triangular form. These are the case of Steiner surfaces of degree two. We derive the bilinear forms for such quadrics in a coordinate-f
A emph{Stick graph} is an intersection graph of axis-aligned segments such that the left end-points of the horizontal segments and the bottom end-points of the vertical segments lie on a `ground line, a line with slope $-1$. It is an open question to