ﻻ يوجد ملخص باللغة العربية
In this thesis we introduce quantum refereed games, which are quantum interactive proof systems with two competing provers. We focus on a restriction of this model that we call short quantum games and we prove an upper bound and a lower bound on the expressive power of these games. For the lower bound, we prove that every language having an ordinary quantum interactive proof system also has a short quantum game. An important part of this proof is the establishment of a quantum measurement that reliably distinguishes between quantum states chosen from disjoint convex sets. For the upper bound, we show that certain types of quantum refereed games, including short quantum games, are decidable in deterministic exponential time by supplying a separation oracle for use with the ellipsoid method for convex feasibility.
The discrepancy method is widely used to find lower bounds for communication complexity of XOR games. It is well known that these bounds can be far from optimal. In this context Disjointness is usually mentioned as a case where the method fails to gi
Recently, a standardized framework was proposed for introducing quantum-inspired moves in mathematical games with perfect information and no chance. The beauty of quantum games-succinct in representation, rich in structures, explosive in complexity,
A leading proposal for verifying near-term quantum supremacy experiments on noisy random quantum circuits is linear cross-entropy benchmarking. For a quantum circuit $C$ on $n$ qubits and a sample $z in {0,1}^n$, the benchmark involves computing $|la
The classical communication complexity of testing closeness of discrete distributions has recently been studied by Andoni, Malkin and Nosatzki (ICALP19). In this problem, two players each receive $t$ samples from one distribution over $[n]$, and the
We study the query complexity of quantum learning problems in which the oracles form a group $G$ of unitary matrices. In the simplest case, one wishes to identify the oracle, and we find a description of the optimal success probability of a $t$-query