ﻻ يوجد ملخص باللغة العربية
Recently, a standardized framework was proposed for introducing quantum-inspired moves in mathematical games with perfect information and no chance. The beauty of quantum games-succinct in representation, rich in structures, explosive in complexity, dazzling for visualization, and sophisticated for strategic reasoning-has drawn us to play concrete games full of subtleties and to characterize abstract properties pertinent to complexity consequence. Going beyond individual games, we explore the tractability of quantum combinatorial games as whole, and address fundamental questions including: Quantum Leap in Complexity: Are there polynomial-time solvable games whose quantum extensions are intractable? Quantum Collapses in Complexity: Are there PSPACE-complete games whose quantum extensions fall to the lower levels of the polynomial-time hierarchy? Quantumness Matters: How do outcome classes and strategies change under quantum moves? Under what conditions doesnt quantumness matter? PSPACE Barrier for Quantum Leap: Can quantum moves launch PSPACE games into outer polynomial space We show that quantum moves not only enrich the game structure, but also impact their computational complexity. In settling some of these basic questions, we characterize both the powers and limitations of quantum moves as well as the superposition of game configurations that they create. Our constructive proofs-both on the leap of complexity in concrete Quantum Nim and Quantum Undirected Geography and on the continuous collapses, in the quantum setting, of complexity in abstract PSPACE-complete games to each level of the polynomial-time hierarchy-illustrate the striking computational landscape over quantum games and highlight surprising turns with unexpected quantum impact. Our studies also enable us to identify several elegant open questions fundamental to quantum combinatorial game theory (QCGT).
Computers are known to solve a wide spectrum of problems, however not all problems are computationally solvable. Further, the solvable problems themselves vary on the amount of computational resources they require for being solved. The rigorous analy
Covering spaces of graphs have long been useful for studying expanders (as graph lifts) and unique games (as the label-extended graph). In this paper we advocate for the thesis that there is a much deeper relationship between computational topology a
We describe the Turing Machine, list some of its many influences on the theory of computation and complexity of computations, and illustrate its importance.
We settle two long-standing complexity-theoretical questions-open since 1981 and 1993-in combinatorial game theory (CGT). We prove that the Grundy value (a.k.a. nim-value, or nimber) of Undirected Geography is PSPACE-complete to compute. This exhib
In two papers, Burgisser and Ikenmeyer (STOC 2011, STOC 2013) used an adaption of the geometric complexity theory (GCT) approach by Mulmuley and Sohoni (Siam J Comput 2001, 2008) to prove lower bounds on the border rank of the matrix multiplication t