ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalability of Genetic Programming and Probabilistic Incremental Program Evolution

144   0   0.0 ( 0 )
 نشر من قبل Martin Pelikan
 تاريخ النشر 2005
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses scalability of standard genetic programming (GP) and the probabilistic incremental program evolution (PIPE). To investigate the need for both effective mixing and linkage learning, two test problems are considered: ORDER problem, which is rather easy for any recombination-based GP, and TRAP or the deceptive trap problem, which requires the algorithm to learn interactions among subsets of terminals. The scalability results show that both GP and PIPE scale up polynomially with problem size on the simple ORDER problem, but they both scale up exponentially on the deceptive problem. This indicates that while standard recombination is sufficient when no interactions need to be considered, for some problems linkage learning is necessary. These results are in agreement with the lessons learned in the domain of binary-string genetic algorithms (GAs). Furthermore, the paper investigates the effects of introducing utnnecessary and irrelevant primitives on the performance of GP and PIPE.



قيم البحث

اقرأ أيضاً

121 - W. B. Langdon 2017
We evolve binary mux-6 trees for up to 100000 generations evolving some programs with more than a hundred million nodes. Our unbounded Long-Term Evolution Experiment LTEE GP appears not to evolve building blocks but does suggests a limit to bloat. We do see periods of tens even hundreds of generations where the population is 100 percent functionally converged. The distribution of tree sizes is not as predicted by theory.
253 - W. B. Langdon , M. Harman 2013
We study a generic program to investigate the scope for automatically customising it for a vital current task, which was not considered when it was first written. In detail, we show genetic programming (GP) can evolve models of aspects of BLASTs outp ut when it is used to map Solexa Next-Gen DNA sequences to the human genome.
We study machine learning formulations of inductive program synthesis; that is, given input-output examples, synthesize source code that maps inputs to corresponding outputs. Our key contribution is TerpreT, a domain-specific language for expressing program synthesis problems. A TerpreT model is composed of a specification of a program representation and an interpreter that describes how programs map inputs to outputs. The inference task is to observe a set of input-output examples and infer the underlying program. From a TerpreT model we automatically perform inference using four different back-ends: gradient descent (thus each TerpreT model can be seen as defining a differentiable interpreter), linear program (LP) relaxations for graphical models, discrete satisfiability solving, and the Sketch program synthesis system. TerpreT has two main benefits. First, it enables rapid exploration of a range of domains, program representations, and interpreter models. Second, it separates the model specification from the inference algorithm, allowing proper comparisons between different approaches to inference. We illustrate the value of TerpreT by developing several interpreter models and performing an extensive empirical comparison between alternative inference algorithms on a variety of program models. To our knowledge, this is the first work to compare gradient-based search over program space to traditional search-based alternatives. Our key empirical finding is that constraint solvers dominate the gradient descent and LP-based formulations. This is a workshop summary of a longer report at arXiv:1608.04428
This paper describes a scalable algorithm for solving multiobjective decomposable problems by combining the hierarchical Bayesian optimization algorithm (hBOA) with the nondominated sorting genetic algorithm (NSGA-II) and clustering in the objective space. It is first argued that for good scalability, clustering or some other form of niching in the objective space is necessary and the size of each niche should be approximately equal. Multiobjective hBOA (mohBOA) is then described that combines hBOA, NSGA-II and clustering in the objective space. The algorithm mohBOA differs from the multiobjective variants of BOA and hBOA proposed in the past by including clustering in the objective space and allocating an approximately equally sized portion of the population to each cluster. The algorithm mohBOA is shown to scale up well on a number of problems on which standard multiobjective evolutionary algorithms perform poorly.
Genetic Programming (GP) is an evolutionary algorithm commonly used for machine learning tasks. In this paper we present a method that allows GP to transform the representation of a large-scale machine learning dataset into a more compact representat ion, by means of processing features from the original representation at individual level. We develop as a proof of concept of this method an autoencoder. We tested a preliminary version of our approach in a variety of well-known machine learning image datasets. We speculate that this method, used in an iterative manner, can produce results competitive with state-of-art deep neural networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا