ﻻ يوجد ملخص باللغة العربية
We extend, to include the effects of finite temperature, our earlier study of the interband dynamics of electrons with Markoffian dephasing under the influence of uniform static electric fields. We use a simple two-band tight-binding model and study the electric current response as a function of field strength and the model parameters. In addition to the Esaki-Tsu peak, near where the Bloch frequency equals the damping rate, we find current peaks near the Zener resonances, at equally spaced values of the inverse electric field. These become more prominenent and numerous with increasing bandwidth (in units of the temperature, with other parameters fixed). As expected, they broaden with increasing damping (dephasing).
Within a two-band tight binding model, we investigate the dynamics of electrons with Markoffian dephasing under the influence of static electric fields. With the help of both numerical and analytic calculations we find that the dephasing ultimately t
We study Landau-Zener transitions in a fermionic dissipative environment where a two-level (up and down states) system is coupled to two metallic leads kept with different chemical potentials at zero temperature. The dynamics of the system is simulat
Here we analyze the finite temperature expectation values of the charge and current densities for a massive fermionic quantum field with nonzero chemical potential, $mu$, induced by a magnetic flux running along the axis of an idealized cosmic string
Building on previous developments, we show that the Diagrammatic Monte Carlo technique allows to compute finite temperature response functions directly on the real-frequency axis within any field-theoretical formulation of the interacting fermion pro
Weyl anomaly leads to novel anomalous currents in a spacetime with boundaries. Recently it is found that the anomalous current can be significantly enhanced by the high temperature for free theories, which could make the experimental measurement easi