ﻻ يوجد ملخص باللغة العربية
We study Landau-Zener transitions in a fermionic dissipative environment where a two-level (up and down states) system is coupled to two metallic leads kept with different chemical potentials at zero temperature. The dynamics of the system is simulated by an iterative numerically exact influence functional path integral method. In the pure Landau-Zener problem, two kinds of transition (from up to down state and from down to up state) probability are symmetric. However, this symmetry is destroyed by coupling the system to the bath. In addition, in both kinds of transitions, there exists a nonmonotonic dependence of the transition probability on the sweep velocity; meanwhile nonmonotonic dependence of the transition probability on the system-bath coupling strength is only shown in one of them. As in the spin-boson model, these phenomena can be explained by a simple phenomenological model.
Within a two-band tight binding model, we investigate the dynamics of electrons with Markoffian dephasing under the influence of static electric fields. With the help of both numerical and analytic calculations we find that the dephasing ultimately t
We study Landau-Zener transitions between two states with the addition of a shared discretized continuum. The continuum allows for population decay from the initial state as well as indirect transitions between the two states. The probability of nona
We report an experimental measurement of Landau-Zener transitions on an individual flux qubit within a multi-qubit superconducting chip designed for adiabatic quantum computation. The method used isolates a single qubit, tunes its tunneling amplitude
The spin-dependent electron transport has been studied in magnetic semiconductor waveguides (nanowires) in the helical magnetic field. We have shown that -- apart from the known conductance dip located at the magnetic field equal to the helical-field
We analyze the influence of classical Gaussian noise on Landau-Zener transitions during a two-level crossing in a time-dependent regular external field. Transition probabilities and coherence factors become random due to the noise. We calculate their