ﻻ يوجد ملخص باللغة العربية
The dynamics of prices in financial markets has been studied intensively both experimentally (data analysis) and theoretically (models). Nevertheless, a complete stochastic characterization of volatility is still lacking. What it is well known is that absolute returns have memory on a long time range, this phenomenon is known as clustering of volatility. In this paper we show that volatility correlations are power-laws with a non-unique scaling exponent. This kind of multiscale phenomenology, which is well known to physicists since it is relevant in fully developed turbulence and in disordered systems, is recently pointed out for financial series. Starting from historical returns series, we have also derived the volatility distribution, and the results are in agreement with a log-normal shape. In our study we consider the New York Stock Exchange (NYSE) daily composite index closes (January 1966 to June 1998) and the US Dollar/Deutsch Mark (USD-DM) noon buying rates certified by the Federal Reserve Bank of New York (October 1989 to September 1998).
We perform a scaling analysis on NYSE daily returns. We show that volatility correlations are power-laws on a time range from one day to one year and, more important, that they exhibit a multiscale behaviour.
The segregation of large spheres in a granular bed under vertical vibrations is studied. In our experiments we systematically measure rise times as a function of density, diameter and depth; for two different sinusoidal excitations. The measurements
We consider the structure functions S^(q)(T), i.e. the moments of order q of the increments X(t+T)-X(t) of the Foreign Exchange rate X(t) which give clear evidence of scaling (S^(q)(T)~T^z(q)). We demonstrate that the nonlinearity of the observed sca
A new approach to the understanding of complex behavior of financial markets index using tools from thermodynamics and statistical physics is developed. Physical complexity, a magnitude rooted in Kolmogorov-Chaitin theory is applied to binary sequenc
We discuss price variations distributions in foreign exchange markets, characterizing them both in calendar and business time frameworks. The price dynamics is found to be the result of two distinct processes, a multi-variance diffusion and an error