ﻻ يوجد ملخص باللغة العربية
The segregation of large spheres in a granular bed under vertical vibrations is studied. In our experiments we systematically measure rise times as a function of density, diameter and depth; for two different sinusoidal excitations. The measurements reveal that: at low frequencies, inertia and convection are the only mechanisms behind segregation. Inertia (convection) dominates when the relative density is greater (less) than one. At high frequencies, where convection is suppressed, fluidization of the granular bed causes either buoyancy or sinkage and segregation occurs.
We investigate the segregation of a dense binary mixture of granular particles that only differ in their restitution coefficient. The mixture is vertically vibrated in the presence of gravity. We find a partial segregation of the species, where most
We present an X-ray tomography study of the segregation mechanisms of tracer particles in a three-dimensional cyclically sheared bi-disperse granular medium. Big tracers are dragged by convection to rise to the top surface and then remain trapped the
A solution of the inelastic Enskog equation that goes beyond the weak dissipation limit and applies for moderate densities is used to determine the thermal diffusion factor of an intruder immersed in a dense granular gas under gravity. This factor pr
The dynamics of prices in financial markets has been studied intensively both experimentally (data analysis) and theoretically (models). Nevertheless, a complete stochastic characterization of volatility is still lacking. What it is well known is tha
We experimentally investigate the response of a sheared granular medium in a Couette geometry. The apparatus exhibits the expected stick-slip motion and we probe it in the very intermittent regime resulting from low driving. Statistical analysis of t