ﻻ يوجد ملخص باللغة العربية
We present a resistance bridge which uses a SQUID to measure the shot noise in low impedance samples. The experimental requirements are high DC bias currents (typically 10mA) together with high AC sensitivity (pA/VHz). This system is used to investigate the shot noise in Superconductor/Normal/Superconductor junctions where Andreev reflection enhanced shot noise is expected. Because our setup has an intrinsic noise much smaller than the thermal noise of the resistance bridge at 4.2K, reliable results can be obtained on impedances out of the range of classical measurement schemes.
We designed and fabricated a new type of superconducting quantum interference device (SQUID) susceptometers for magnetic imaging of quantum materials. The 2-junction SQUID sensors employ 3D Nb nano-bridges fabricated using electron beam lithography.
The demand for a fast high-frequency read-out of high impedance devices, such as quantum dots, necessitates impedance matching. Here we use a resonant impedance matching circuit (a stub tuner) realized by on-chip superconducting transmission lines to
We present the first measurements of the third moment of the voltage fluctuations in a conductor. This technique can provide new and complementary information on the electronic transport in conducting systems. The measurement was performed on non-sup
We measured the shot noise in fully epitaxial Fe/MgAl2OX/Fe-based magnetic tunneling junctions (MTJs). While the Fano factor to characterize the shot noise is very close to unity in the antiparallel configuration, it is reduced to 0.98 in the paralle
We report on shot noise measurements in carbon nanotube based Fabry-Perot electronic interferometers. As a consequence of quantum interferences, the noise power spectral density oscillates as a function of the voltage applied to the gate electrode. T