ﻻ يوجد ملخص باللغة العربية
We designed and fabricated a new type of superconducting quantum interference device (SQUID) susceptometers for magnetic imaging of quantum materials. The 2-junction SQUID sensors employ 3D Nb nano-bridges fabricated using electron beam lithography. The two counter-wound balanced pickup loops of the SQUID enable gradiometric measurement and they are surrounded by a one-turn field coil for susceptibility measurements. The smallest pickup loop of the SQUIDs were 1 ${mu}m$ in diameter and the flux noise was around 1 $mu{Phi}_0/sqrt{Hz}$ at 100 Hz. We demonstrate scanning magnetometry, susceptometry and current magnetometry on some test samples using these nano-SQUIDs.
Scanning superconducting quantum interference device (SQUID) microscopy is a magnetic imaging technique combining high-field sensitivity with nanometer-scale spatial resolution. State-of-the-art SQUID-on-tip probes are now playing an important role i
Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of th
We present a combined scanning force and tunneling microscope working in a dilution refrigerator that is optimized for the study of individual electronic nano-devices. This apparatus is equipped with commercial piezo-electric positioners enabling the
We study voltage response of nano-bridge based DC-SQUID fabricated on a Si_{3}N_{4} membrane. Such a configuration may help in reducing 1/f noise, which originates from substrate fluctuating defects. We find that the poor thermal coupling between the
Scanning nanoscale superconducting quantum interference devices (SQUIDs) are gaining interest as highly sensitive microscopic magnetic and thermal characterization tools of quantum and topological states of matter and devices. Here we introduce a nov