ﻻ يوجد ملخص باللغة العربية
The combined effect of disorder and symmetry-breaking fields on the two-dimensional XY model is examined. The study includes disorder in the interaction among spins in the form of random phase shifts as well as disorder in the local orientation of the field. The phase diagrams are determined and the properties of the various phases and phase transitions are calculated. We use a renormalization group approach in the Coulomb gas representation of the model. Our results differ from those obtained for special cases in previous works. In particular, we find a changed topology of the phase diagram that is composed of phases with long-range order, quasi-long-range order, and short-range order. The discrepancies can be ascribed to a breakdown of the fugacity expansion in the Coulomb gas representation. Implications for physical systems such as planar Josephson junctions and the faceting of crystal surfaces are discussed.
Random Matrix Theory (RMT) provides a tool to understand physical systems in which spectral properties can be changed from Poissonian (integrable) to Wigner-Dyson (chaotic). Such transitions can be seen in Rosenzweig-Porter ensemble (RPE) by tuning t
We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case the accumulated distance travel
We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substanti
The fully-connected Ising $p$-spin model has for $p >2$ a discontinuous phase transition from the paramagnetic phase to a stable state with one-step replica symmetry breaking (1RSB). However, simulations in three dimension do not look like these mean
We study the high-energy phase diagram of a two-dimensional spin-$frac{1}{2}$ Heisenberg model on a square lattice in the presence of disorder. The use of large-scale tensor network numerics allows us to compute the bi-partite entanglement entropy fo