ترغب بنشر مسار تعليمي؟ اضغط هنا

XY models with disorder and symmetry-breaking fields in two dimensions

275   0   0.0 ( 0 )
 نشر من قبل Stefan Scheidl
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The combined effect of disorder and symmetry-breaking fields on the two-dimensional XY model is examined. The study includes disorder in the interaction among spins in the form of random phase shifts as well as disorder in the local orientation of the field. The phase diagrams are determined and the properties of the various phases and phase transitions are calculated. We use a renormalization group approach in the Coulomb gas representation of the model. Our results differ from those obtained for special cases in previous works. In particular, we find a changed topology of the phase diagram that is composed of phases with long-range order, quasi-long-range order, and short-range order. The discrepancies can be ascribed to a breakdown of the fugacity expansion in the Coulomb gas representation. Implications for physical systems such as planar Josephson junctions and the faceting of crystal surfaces are discussed.



قيم البحث

اقرأ أيضاً

Random Matrix Theory (RMT) provides a tool to understand physical systems in which spectral properties can be changed from Poissonian (integrable) to Wigner-Dyson (chaotic). Such transitions can be seen in Rosenzweig-Porter ensemble (RPE) by tuning t he fluctuations in the random matrix elements. We show that integrable or chaotic regimes in any 2-level system can be uniquely controlled by the symmetry-breaking properties. We compute the Nearest Neighbour Spacing (NNS) distributions of these matrix ensembles and find that they exactly match with that of RPE. Our study indicates that the loss of integrability can be exactly mapped to the extent of disorder in 2-level systems.
72 - R. Juhasz , L. Santen , F. Igloi 2004
We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case the accumulated distance travel ed by the particles, x, scales with the time, t, as x ~ t^{1/z}, with a dynamical exponent z > 0. Using extreme value statistics and an asymptotically exact strong disorder renormalization group method we analytically calculate, z_{pt}, for particlewise (pt) disorder, which is argued to be related to the dynamical exponent for sitewise (st) disorder as z_{st}=z_{pt}/2. In the symmetric situation with zero mean drift the particle diffusion is ultra-slow, logarithmic in time.
We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substanti ally this picture by: (i) determining the precise location of the clustering transition; (ii) uncovering a second `condensation phase transition in the structure of the solution set for k larger or equal than 4. These results both follow from computing the large deviation rate of the internal entropy of pure states. From a technical point of view our main contributions are a simplified version of the cavity formalism for special values of the Parisi replica symmetry breaking parameter m (in particular for m=1 via a correspondence with the tree reconstruction problem) and new large-k expansions.
83 - J. Yeo , M. A. Moore 2019
The fully-connected Ising $p$-spin model has for $p >2$ a discontinuous phase transition from the paramagnetic phase to a stable state with one-step replica symmetry breaking (1RSB). However, simulations in three dimension do not look like these mean -field results and have features more like those which would arise with full replica symmetry breaking (FRSB). To help understand how this might come about we have studied in the fully connected $p$-spin model the state of two-step replica symmetry breaking (2RSB). It has a free energy degenerate with that of 1RSB, but the weight of the additional peak in $P(q)$ vanishes. We expect that the state with full replica symmetry breaking (FRSB) is also degenerate with that of 1RSB. We suggest that finite size effects will give a non-vanishing weight to the FRSB features, as also will fluctuations about the mean-field solution. Our conclusion is that outside the fully connected model in the thermodynamic limit, FRSB is to be expected rather than 1RSB.
We study the high-energy phase diagram of a two-dimensional spin-$frac{1}{2}$ Heisenberg model on a square lattice in the presence of disorder. The use of large-scale tensor network numerics allows us to compute the bi-partite entanglement entropy fo r systems of up to $30times7$ lattice sites. We demonstrate the existence of a finite many-body localized phase for large disorder strength $W$ for which the eigenstate thermalization hypothesis is violated. Moreover, we show explicitly that the area law holds for excited states in this phase and determine an estimate for the critical $W_{rm{c}}$ where the transition to the ergodic phase occurs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا