ﻻ يوجد ملخص باللغة العربية
The transfer matrix and matrix multiplication ansatz, when applied to nonequilibrium steady states in asymmetric exclusion processed and traffic models, has given many exact results for phase diagrams, bulk densities and fluxes, as well as density profiles and spatial and temporal correlation functions for models with a dynamics that is updated in (random) sequential and sublattice-parallel order. Here we consider fully parallel or synchronous dynamics, for which only partial results are known, due to the appearance of complicated strong short range correlations, that invalidate simple mean field approximations. This paper is based on two new ingredients: (i) a microscopic characterization of order parameters and local configurations in the relevant phases, based on the microdynamics of the model, and (ii) an improved mean field approximation, which neglects certain four point - and higher order correlation functions. It is conjectured that the density profiles, obtained here, are exact up to terms that are exponentially small in the system size.
We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice,
We introduce and solve exactly a class of interacting particle systems in one dimension where particles hop asymmetrically. In its simplest form, namely asymmetric zero range process (AZRP), particles hop on a one dimensional periodic lattice with as
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle d
We show that the known matrix representations of the stationary state algebra of the Asymmetric Simple Exclusion Process (ASEP) can be interpreted combinatorially as various weighted lattice paths. This interpretation enables us to use the constant t
We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions. The Q-ASEP describes a chain of spinless fermions with random hoppings that are induced by a Markovian environment