ﻻ يوجد ملخص باللغة العربية
We show that the known matrix representations of the stationary state algebra of the Asymmetric Simple Exclusion Process (ASEP) can be interpreted combinatorially as various weighted lattice paths. This interpretation enables us to use the constant term method (CTM) and bijective combinatorial methods to express many forms of the ASEP normalisation factor in terms of Ballot numbers. One particular lattice path representation shows that the coefficients in the recurrence relation for the ASEP correlation functions are also Ballot numbers. Additionally, the CTM has a strong combinatorial connection which leads to a new ``canonical lattice path representation and to the ``omega-expansion which provides a uniform approach to computing the asymptotic behaviour in the various phases of the ASEP. The path representations enable the ASEP normalisation factor to be seen as the partition function of a more general polymer chain model having a two parameter interaction with a surface.
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle d
We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice,
The transfer matrix and matrix multiplication ansatz, when applied to nonequilibrium steady states in asymmetric exclusion processed and traffic models, has given many exact results for phase diagrams, bulk densities and fluxes, as well as density pr
We study the nonequilibrium steady states in asymmetric exclusion processes (TASEP) with open boundary conditions having spatially inhomogeneous hopping rates. Assuming spatially smoothly varying hopping rates with a few (or no) discontinuities, we s
We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincid