ﻻ يوجد ملخص باللغة العربية
We describe a simple meanfield variational approach to study a number of properties of intrinsically stiff chains which are appropriate models for a large class of biopolymers. We present the calculation of the distribution of end-to-end distance and the elastic response of stiff chains under tension using this approach. In the former example we find that the simple expression almost quantitatively fits the results of computer simulation. For the case of the stiff chain under tension we recover analytically all the known limits. We obtain quantitative agreement with recent experiments on the stretching of DNA. The limitations of our approach are also discussed.
We propose a lattice model for RNA based on a self-interacting two-tolerant trail. Self-avoidance and elements of tertiary structure are taken into account. We investigate a simple version of the model in which the native state of RNA consists of jus
The basic notions of statistical mechanics (microstates, multiplicities) are quite simple, but understanding how the second law arises from these ideas requires working with cumbersomely large numbers. To avoid getting bogged down in mathematics, one
Thermally fluctuating sheets and ribbons provide an intriguing forum in which to investigate strong violations of Hookes Law: large distance elastic parameters are in fact not constant, but instead depend on the macroscopic dimensions. Inspired by re
The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques.
Using a recently developed bead-spring model for semiflexible polymers that takes into account their natural extensibility, we report an efficient algorithm to simulate the dynamics for polymers like double-stranded DNA (dsDNA) in the absence of hydr