ﻻ يوجد ملخص باللغة العربية
Thermally fluctuating sheets and ribbons provide an intriguing forum in which to investigate strong violations of Hookes Law: large distance elastic parameters are in fact not constant, but instead depend on the macroscopic dimensions. Inspired by recent experiments on free-standing graphene cantilevers, we combine the statistical mechanics of thin elastic plates and large-scale numerical simulations to investigate the thermal renormalization of the bending rigidity of graphene ribbons clamped at one end. For ribbons of dimensions $Wtimes L$ (with $Lgeq W$), the macroscopic bending rigidity $kappa_R$ determined from cantilever deformations is independent of the width when $W<ell_textrm{th}$, where $ell_textrm{th}$ is a thermal length scale, as expected. When $W>ell_textrm{th}$, however, this thermally renormalized bending rigidity begins to systematically increase, in agreement with the scaling theory, although in our simulations we were not quite able to reach the system sizes necessary to determine the fully developed power law dependence on $W$. When the ribbon length $L > ell_p$, where $ell_p$ is the $W$-dependent thermally renormalized ribbon persistence length, we observe a scaling collapse and the beginnings of large scale random walk behavior.
We propose a lattice model for RNA based on a self-interacting two-tolerant trail. Self-avoidance and elements of tertiary structure are taken into account. We investigate a simple version of the model in which the native state of RNA consists of jus
We describe a simple meanfield variational approach to study a number of properties of intrinsically stiff chains which are appropriate models for a large class of biopolymers. We present the calculation of the distribution of end-to-end distance and
The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques.
We have investigated the formation of helium droplets in two physical situations. In the first one, droplets are atomised from superfluid or normal liquid by a fast helium vapour flow. In the second, droplets of normal liquid are formed inside porous
The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress