ﻻ يوجد ملخص باللغة العربية
We use a model previously formulated based on the double exchange mechanism and diagonal disorder to calculate magnetization and conductivity for La_{1-x}Sr_xMnO_3 type crystals as a function of temperature. The model represents each Mn^{4+} ion by a spin S=1/2, on which an electron can be added to produce Mn$^{3+}$. We include a hopping energy $t,$ two strong intratomic interactions: exchange $J$, and Coulomb $U,$ and, to represent in a simple way the effects of disorder, a Lorentzian distribution of diagonal energies of width $Gamma $ at the Mn sites. In the strong coupling limit, $J,U>>t,Gamma $, the model results can be expressed in terms of $t$ and $Gamma .$ We use the results of the model to draw phase diagrams that separate ferromagnetic from paramagnetic states and also insulating states where the Fermi level falls in a region of localized states from metallic where the Fermi level falls in a region of extended states. Finally, assuming that particles in extended states make the largest contribution to conductivity, we calculate the resistivity for different concentrations and magnetic fields and compare with experiment. We conclude that for the model can be used successfully to represent the transport properties of the systems under consideration.
We study a simplified model of the electronic structure of compounds of the type of La$_{1-x}$Sr$_x$MnO$_3$. The model represents each Mn$^{4+}$ ion by a spin S=1/2, on which an electron can be added to produce Mn$^{3+}$. We include two strong intrat
We have studied the chemical potential shift as a function of temperature in Nd$_{1-x}$Sr$_x$MnO$_3$ (NSMO) by measurements of core-level photoemission spectra. For ferromagnetic samples ($x=0.4$ and 0.45), we observed an unusually large upward chemi
We have demonstrated the effect of hydrostatic pressure on magnetic and transport properties, and thermal transport properties in electron-doped manganites CaMn$_{1-x}$Sb$_{x}$O$_{3}$. The substitution of Sb$^{5+}$ ion for Mn $^{4+}$site of the paren
Static (DC) and dynamic (AC, at 14 MHz and 8 GHz) magnetic susceptibilities of single crystals of a ferromagnetic superconductor, $textrm{EuFe}_{2}(textrm{As}_{1-x}textrm{P}_{x})_{2}$ (x = 0.23), were measured in pristine state and after different do
We report magnetic susceptibility $chi(T)$ measurements on oxygen-isotope exchanged La$_{1-x}$Ca$_{x}$MnO$_{3+y}$ up to 700 K. The $1/chi(T)$ data show that the ferromagnetic exchange-energy $J$ depends strongly on the oxygen-isotope mass. The isotop