ﻻ يوجد ملخص باللغة العربية
We show that the single quasi-particle Schrodinger equation for a certain form of one-body potential yields a stationary one soliton solution. The one-body potential is assumed to arise from the self- interacting charge distribution with the singular kernel of the Calogero-Sutherland model. The quasi-particle has negative or positive charge for negative or positive coupling constant of the interaction. The magnitude of the charge is unity only for the semion. It is also pointed out that for repulsive coupling, our equation is mathematically the same as the steady-state Smoluchowski equation of Dysons Coulomb gas model.
We solve perturbatively the quantum elliptic Calogero-Sutherland model in the regime in which the quotient between the real and imaginary semiperiods of the Weierstrass ${cal P}$ function is small
An interesting observation was reported by Corrigan-Sasaki that all the frequencies of small oscillations around equilibrium are quantised for Calogero and Sutherland (C-S) systems, typical integrable multi-particle dynamics. We present an analytic
A one-dimensional quantum many-body system consisting of particles confined in a harmonic potential and subject to finite-range two-body and three-body inverse-square interactions is introduced. The range of the interactions is set by truncation beyo
Hole propagator of spin 1/2 Calogero-Sutherland model is derived using Uglovs method, which maps the exact eigenfunctions of the model, called Yangian Gelfand-Zetlin basis, to a limit of Macdonald polynomials (gl_2-Jack polynomials). To apply this ma
We consider a quantum quench of the trap frequency in a system of bosons interacting through an inverse-square potential and confined in a harmonic trap (the harmonic Calogero model). We determine exactly the initial state in terms of the post-quench