ﻻ يوجد ملخص باللغة العربية
Hole propagator of spin 1/2 Calogero-Sutherland model is derived using Uglovs method, which maps the exact eigenfunctions of the model, called Yangian Gelfand-Zetlin basis, to a limit of Macdonald polynomials (gl_2-Jack polynomials). To apply this mapping method to the calculation of 1-particle Greens function, we confirm that the sum of the field annihilation operator on Yangian Gelfand-Zetlin basis is transformed to the field annihilation operator on gl_2-Jack polynomials by the mapping. The resultant expression for hole propagator for finite-size system is written in terms of renormalized momenta and spin of quasi-holes and the expression in the thermodynamic limit coincides with the earlier result derived by another method. We also discuss the singularity of the spectral function for a specific coupling parameter where the hole propagator of spin Calogero-Sutherland model becomes equivalent to dynamical colour correlation function of SU(3) Haldane-Shastry model.
We show that the single quasi-particle Schrodinger equation for a certain form of one-body potential yields a stationary one soliton solution. The one-body potential is assumed to arise from the self- interacting charge distribution with the singular
A one-dimensional quantum many-body system consisting of particles confined in a harmonic potential and subject to finite-range two-body and three-body inverse-square interactions is introduced. The range of the interactions is set by truncation beyo
We solve perturbatively the quantum elliptic Calogero-Sutherland model in the regime in which the quotient between the real and imaginary semiperiods of the Weierstrass ${cal P}$ function is small
Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the previously known plaquette-singlet and ant
We present an implementation of the steady state Keldysh approach in a Greens function multiple scattering scheme to calculate the non-equilibrium spin density. This density is used to obtain the spin transfer torque in junctions showing the magnetor