ﻻ يوجد ملخص باللغة العربية
We investigate the density of states (DOS) in an antiferromagnetic spin-system on a square lattice described by the Blume-Capel (BC) model. We use a new and very efficient simulation method, proposed by Wang and Landau, in which we estimate very precisely DOS by sampling in the space of energy. Then we calculate the thermodynamical averages like internal energy, free energy, specific heat and entropy. The BC model exhibits multicritical behaviour such as first- or second-order transitions and tricritical points. It is known that the ground state of the model can exhibit two kinds of staggered antiferromagnetic phases: AF1 (two interpenetrating lattices with S = -1 and S = 1) and AF2 (S = -1 and S = 0 for H < 0; S = 1 and S = 0 for H > 0). We analyze the coexistence of such phases at finite temperatures and determine border lines between them. To understand the microscopic nature of such boundaries we present also some results obtained with the standard Monte Carlo method.
We report on numerical simulations of the two-dimensional Blume-Capel ferromagnet embedded in the triangular lattice. The model is studied in both its first- and second-order phase transition regime for several values of the crystal field via a sophi
We study the pure and random-bo
We consider the one-dimensional spin chain for arbitrary spin $s$ on a periodic chain with $N$ sites, the generalization of the chain that was studied by Blume and Capel cite{bc}: $$H=sum_{i=1}^N left(a (S^z_i)^2+ b S^z_iS^z_{i+1}right).$$ The Hamilt
The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel model are discussed. The system is studied in both the pure and disorder
The finite-temperature phase diagram of the Hubbard model in $d=3$ is obtained from renormalization-group analysis. It exhibits, around half filling, an antiferromagnetic phase and, between 30%--40% electron or hole doping from half filling, a new $t