ﻻ يوجد ملخص باللغة العربية
We consider the one-dimensional spin chain for arbitrary spin $s$ on a periodic chain with $N$ sites, the generalization of the chain that was studied by Blume and Capel cite{bc}: $$H=sum_{i=1}^N left(a (S^z_i)^2+ b S^z_iS^z_{i+1}right).$$ The Hamiltonian only involves the $z$ component of the spin thus it is essentially an Ising cite{Ising} model. The Hamiltonian also figures exactly as the anisotropic term in the famous model studied by Haldane cite{haldane} of the large spin Heisenberg spin chain cite{bethe}. Therefore we call the model the Blume-Capel-Haldane-Ising model. Although the Hamiltonian is trivially diagonal, it is actually not always obvious which eigenstate is the ground state. In this paper we establish which state is the ground state for all regions of the parameter space and thus determine the phase diagram of the model. We observe the existence of solitons-like excitations and we show that the size of the solitons depends only on the ratio $a/b$ and not on the number of sites $N$. Therefore the size of the soliton is an intrinsic property of the soliton not determined by boundary conditions.
We investigate the density of states (DOS) in an antiferromagnetic spin-system on a square lattice described by the Blume-Capel (BC) model. We use a new and very efficient simulation method, proposed by Wang and Landau, in which we estimate very prec
We report on large-scale Wang-Landau Monte Carlo simulations of the critical behavior of two spin models in two- (2d) and three-dimensions (3d), namely the 2d random-bond Ising model and the pure 3d Blume-Capel model at zero crystal-field coupling. T
The key to unraveling intriguing phenomena observed in various Kitaev materials lies in understanding the interplay of Kitaev ($K$) interaction and a symmetric off-diagonal $Gamma$ interaction. To provide insight into the challenging problems, we stu
A central question on Kitaev materials is the effects of additional couplings on the Kitaev model which is proposed to be a candidate for realizing topological quantum computations. However, two spatial dimension typically suffers the difficulty of l
Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat