ترغب بنشر مسار تعليمي؟ اضغط هنا

The phase-diagram of the Blume-Capel-Haldane-Ising spin chain

289   0   0.0 ( 0 )
 نشر من قبل M. B. Paranjape
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the one-dimensional spin chain for arbitrary spin $s$ on a periodic chain with $N$ sites, the generalization of the chain that was studied by Blume and Capel cite{bc}: $$H=sum_{i=1}^N left(a (S^z_i)^2+ b S^z_iS^z_{i+1}right).$$ The Hamiltonian only involves the $z$ component of the spin thus it is essentially an Ising cite{Ising} model. The Hamiltonian also figures exactly as the anisotropic term in the famous model studied by Haldane cite{haldane} of the large spin Heisenberg spin chain cite{bethe}. Therefore we call the model the Blume-Capel-Haldane-Ising model. Although the Hamiltonian is trivially diagonal, it is actually not always obvious which eigenstate is the ground state. In this paper we establish which state is the ground state for all regions of the parameter space and thus determine the phase diagram of the model. We observe the existence of solitons-like excitations and we show that the size of the solitons depends only on the ratio $a/b$ and not on the number of sites $N$. Therefore the size of the soliton is an intrinsic property of the soliton not determined by boundary conditions.



قيم البحث

اقرأ أيضاً

60 - G. Pawlowski 2007
We investigate the density of states (DOS) in an antiferromagnetic spin-system on a square lattice described by the Blume-Capel (BC) model. We use a new and very efficient simulation method, proposed by Wang and Landau, in which we estimate very prec isely DOS by sampling in the space of energy. Then we calculate the thermodynamical averages like internal energy, free energy, specific heat and entropy. The BC model exhibits multicritical behaviour such as first- or second-order transitions and tricritical points. It is known that the ground state of the model can exhibit two kinds of staggered antiferromagnetic phases: AF1 (two interpenetrating lattices with S = -1 and S = 1) and AF2 (S = -1 and S = 0 for H < 0; S = 1 and S = 0 for H > 0). We analyze the coexistence of such phases at finite temperatures and determine border lines between them. To understand the microscopic nature of such boundaries we present also some results obtained with the standard Monte Carlo method.
We report on large-scale Wang-Landau Monte Carlo simulations of the critical behavior of two spin models in two- (2d) and three-dimensions (3d), namely the 2d random-bond Ising model and the pure 3d Blume-Capel model at zero crystal-field coupling. T he numerical data we obtain and the relevant finite-size scaling analysis provide clear answers regarding the universality aspects of both models. In particular, for the random-bond case of the 2d Ising model the theoretically predicted strong universalitys hypothesis is verified, whereas for the second-order regime of the Blume-Capel model, the expected $d=3$ Ising universality is verified. Our study is facilitated by the combined use of the Wang-Landau algorithm and the critical energy subspace scheme, indicating that the proposed scheme is able to provide accurate results on the critical behavior of complex spin systems.
The key to unraveling intriguing phenomena observed in various Kitaev materials lies in understanding the interplay of Kitaev ($K$) interaction and a symmetric off-diagonal $Gamma$ interaction. To provide insight into the challenging problems, we stu dy the quantum phase diagram of a bond-alternating spin-$1/2$ $g_x$-$g_y$ $K$-$Gamma$ chain by density-matrix renormalization group method where $g_x$ and $g_y$ are the bond strengths of the odd and even bonds, respectively. The phase diagram is dominated by even-Haldane ($g_x > g_y$) and odd-Haldane ($g_x < g_y$) phases where the former is topologically trivial while the latter is a symmetry-protected topological phase. Near the antiferromagnetic Kitaev limit, there are two gapped $A_x$ and $A_y$ phases characterized by distinct nonlocal string correlators. In contrast, the isotropic ferromagnetic (FM) Kitaev point serves as a multicritical point where two topological phase transitions meet. The remaining part of the phase diagram contains three symmetry-breaking magnetic phases. One is a six-fold degenerate FM$_{U_6}$ phase where all the spins are parallel to one of the $pm hat{x}$, $pm hat{y}$, and $pm hat{z}$ axes in a six-site spin rotated basis, while the other two have more complex spin structures with all the three spin components being finite. Existence of a rank-2 spin-nematic ordering in the latter is also discussed.
94 - Wang Yang , Alberto Nocera , 2020
A central question on Kitaev materials is the effects of additional couplings on the Kitaev model which is proposed to be a candidate for realizing topological quantum computations. However, two spatial dimension typically suffers the difficulty of l acking controllable approaches. In this work, using a combination of powerful analytical and numerical methods available in one dimension, we perform a comprehensive study on the phase diagram of a one-dimensional version of the spin-1/2 Kitaev-Heisenberg-Gamma model in its full parameter space. A strikingly rich phase diagram is found with nine distinct phases, including four Luttinger liquid phases, a ferromagnetic phase, a Neel ordered phase, an ordered phase of distorted-spiral spin alignments, and two ordered phase which both break a $D_3$ symmetry albeit in different ways, where $D_3$ is the dihedral group of order six. Our work paves the way for studying one-dimensional Kitaev materials and may provide hints to the physics in higher dimensional situations.
Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat tice. We mainly focus on the part of the phase diagram where the pure model undergoes a continuous transition, known to fall into the universality class of the pure Ising ferromagnet. A dedicated scaling analysis reveals concrete evidence in favor of the strong universality hypothesis with the presence of additional logarithmic corrections in the scaling of the specific heat. Our results are in agreement with an early real-space renormalization-group study of the model as well as a very recent numerical work where quenched randomness was introduced in the energy exchange coupling. Finally, by properly fine tuning the control parameters of the randomness distribution we also qualitatively investigate the part of the phase diagram where the pure model undergoes a first-order phase transition. For this region, preliminary evidence indicate a smoothening of the transition to second-order with the presence of strong scaling corrections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا