ﻻ يوجد ملخص باللغة العربية
We study the effects of an external magnetic field on the superconducting properties of a quasi-two-dimensional system of Dirac electrons at an arbitrary temperature. An explicit expression for the superconducting gap is obtained as a function of temperature, magnetic field and coupling parameter ($lambda_{rm R}$). From this, we extract the $B times lambda_{rm R}$, $Ttimes lambda_{rm R}$ and $B times T$ phase diagrams. The last one shows a linear decay of the critical field for small values thereof, which is similar to the behavior observed experimentally in the copper doped dichalcogenide $Cu_xTiSe_2$ and also in intercalated graphite. The second one, presents a coupling dependent critical temperature $T_c$ that resembles the one observed in high-$T_c$ cuprates in the underdoped region and also in $Cu_xTiSe_2$. The first one, exhibits a quantum phase transition connecting a normal and a superconducting phase, occurring at a critical line that corresponds to a magnetic field dependent critical coupling parameter. This should be observed in planar materials containing Dirac electrons, such as $Cu_xTiSe_2$.
We study the effects of an external magnetic field on thensuperconducting phase diagram of a quasi-two-dimensional system of Dirac electrons at an arbitrary temperature. At zero temperature, there is a quantum phase transition connecting a normal and
We present an experimental study of two-dimensional superconducting quantum interference filters (2D-SQIFs) in the presence of a magnetic field B. The dependences of the dc voltage on the applied magnetic field are characterized by a unique delta-lik
We present a theory describing the superconducting (SC) interaction of Dirac electrons in a quasi-two-dimensional system consisting of a stack of N planes. The occurrence of a SC phase is investigated both at T = 0 and T 5 0. At T = 0, we find a quan
The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility m
Starting from a recently proposed comprehensive theory for the high-Tc superconductivity in cuprates, we derive a general analytic expression for the planar resistivity, in the presence of an applied external magnetic field $textbf{H}$ and explore it