ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain wall mobility, stability and Walker breakdown in magnetic nanowires

116   0   0.0 ( 0 )
 نشر من قبل Mougin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analytical calculation of the velocity of a single 180 degree domain wall in a magnetic structure with reduced thickness and/or lateral dimension under the combined action of an external applied magnetic field and an electrical current. As for the case of field-induced domain wall propagation in thick films, two motion regimes with different mobilities are obtained, below and far above the so-called Walker field. Additionally, for the case of current induced motion, a Walker-like current density threshold can be defined. When the dimensions of the system become comparable to the domain wall width, the threshold field and current density, stating the walls internal structure stability, are reduced by the same geometrical demagnetising factor which accounts for the confinement. This points out the fact that the velocity dependence over an extended field/current range and the knowledge of the Walker breakdown are mandatory to draw conclusions about the phenomenological Gilbert damping parameter tuning the magnetisation dynamics.



قيم البحث

اقرأ أيضاً

Using Lorentz transmission electron microscopy we investigate the behavior of domain walls pinned at non-topographic defects in Cr(3 nm)/Permalloy(10 nm)/Cr(5 nm) nanowires of width 500 nm. The pinning sites consist of linear defects where magnetic p roperties are modified by a Ga ion probe with diameter ~ 10 nm using a focused ion beam microscope. We study the detailed change of the modified region (which is on the scale of the focused ion spot) using electron energy loss spectroscopy and differential phase contrast imaging on an aberration (Cs) corrected scanning transmission electron microscope. The signal variation observed indicates that the region modified by the irradiation corresponds to ~ 40-50 nm despite the ion probe size of only 10 nm. Employing the Fresnel mode of Lorentz transmission electron microscopy, we show that it is possible to control the domain wall structure and its depinning strength not only via the irradiation dose but also the line orientation.
164 - X. R. Wang , P. Yan 2008
The propagation of a head-to-head magnetic domain-wall (DW) or a tail-to-tail DW in a magnetic nanowire under a static field along the wire axis is studied. Relationship between the DW velocity and DW structure is obtained from the energy considerati on. The role of the energy dissipation in the field-driven DW motion is clarified. Namely, a field can only drive a domain-wall propagating along the field direction through the mediation of a damping. Without the damping, DW cannot propagate along the wire. Contrary to the common wisdom, DW velocity is, in general, proportional to the energy dissipation rate, and one needs to find a way to enhance the energy dissipation in order to increase the propagation speed. The theory provides also a nature explanation of the wire-width dependence of the DW velocity and velocity oscillation beyond Walker breakdown field.
175 - Voicu O. Dolocan 2015
Interactions between pairs of magnetic domain walls (DW) and pinning by radial constrictions were studied in cylindrical nanowires with surface roughness. It was found that a radial constriction creates a symmetric pinning potential well, with a chan ge of slope when the DW is situated outside the notch. Surface deformation induces an asymmetry in the pinning potential as well as dynamical pinning. The depinning fields of the domain walls were found generally to decrease with increasing surface roughness. A DW pinned at a radial constriction creates a pinning potential well for a free DW in a parallel wire. We determined that trapped bound DW states appear above the depinning threshold and that the surface roughness facilitates the trapped bound DW states in parallel wires.
163 - Voicu O. Dolocan 2013
We study the formation and control of metastable states of pairs of domain walls in cylindrical nanowires of small diameter where the transverse walls are the lower energy state. We show that these pairs form bound states under certain conditions, wi th a lifetime as long as 200ns, and are stabilized by the influence of a spin polarized current. Their stability is analyzed with a model based on the magnetostatic interaction and by 3D micromagnetic simulations. The apparition of bound states could hinder the operation of devices.
142 - A. Pivano , V. O. Dolocan 2015
The interaction between transverse magnetic domain walls (TDWs) in planar (2D) and cylindrical (3D) nanowires is examined using micromagnetic simulations. We show that in perfect and surface deformed wires the free TDWs behave differently, as the 3D TDWs combine into metastable states with average lifetimes of 300ns depending on roughness, while the 2D TDWs do not due to 2D shape anisotropy. When the 2D and 3D TDWs are pinned at artificial constrictions, they behave similarly as they interact mainly through the dipolar field. This magnetostatic interaction is well described by the point charge model with multipole expansion. In surface deformed wires with artificial constrictions, the interaction becomes more complex as the depinning field decreases and dynamical pinning can lead to local resonances. This can strongly influence the control of TDWs in DW-based devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا