The anisotropic broadening of ZrSiO4 sample is modelled using the Stephenss phenomenological model for anisotropic line broadening and the three dimensional strain distribution in the sample is plotted. The micro-structural parameters like domain size and dislocation density are estimated using the variance method.
While synthesizing the single crystals of novel materials is not always feasible, orienting the layered polycrystals becomes an attractive method in the studies of angular dependencies of inelastic scattering of x-rays or neutrons. Putting in use the
Rietveld analysis of layered structures in novel manganites and cuprates we develop the studies of their anisotropic properties with oriented powders instead of single crystals. Densities of phonon states (DOS) and atomic thermal displacememts (ATD) are anisotropic in the A-site ordered manganites LnBaMn2Oy of both y=5 and y=6 series (Ln=Y, La, Sm, Gd). We establish the angular dependence of DOS on textures of arbitrary strengths, link the textures observed by x-ray and gamma-ray techniques, and solve the problem of disentanglement of Goldanskii-Karyagin effect (GKE) and texture in Moessbauer spectra.
We use ultrafast x-ray and electron diffraction to disentangle spin-lattice coupling of granular FePt in the time domain. The reduced dimensionality of single-crystalline FePt nanoparticles leads to strong coupling of magnetic order and a highly anis
otropic three-dimensional lattice motion characterized by a- and b-axis expansion and c-axis contraction. The resulting increase of the FePt lattice tetragonality, the key quantity determining the energy barrier between opposite FePt magnetization orientations, persists for tens of picoseconds. These results suggest a novel approach to laser-assisted magnetic switching in future data storage applications.
The structure of bundles of single-walled carbon nanotubes (SWNT) has been refined by Rietveld analysis using neutron and X-ray powder diffraction data. Based on previous simulation studies of powder diffraction data of SWNT and standard Rietveld ana
lyses, we have developed a pattern fit technique for SWNT which provides precise structure parameters. We also show that the present technique can be used with the maximum entropy method (MEM), which is complementary to the Rietveld analysis. Using the neutron diffraction data of pristine SWNT, we have successfully reconstructed the density of carbon nuclei and zero density in the inner cavity of SWNT by MEM.
The volume of tantalum versus pressure has been accurately measured up to 101 GPa by single-crystal x-ray diffraction, with helium as pressure transmitting medium. Slight deviation from previous static determinations is observed. Discrepancy with red
uced shock-wave and ultrasonic data supports recent doubts about the calibration of the ruby pressure scale. Finally, first principle calculations of the literature show a positive curvature in $P(V)$ relative to the experimental data, even with a modified pressure scale.
We present a simple model to describe the dark matter density, the gas density, and the gas temperature profiles of galaxy clusters. Analytical expressions for these quantities are given in terms of only five free parameters with a clear physical mea
ning: the mass M of the dark matter halo (or the characteristic temperature T_0), the characteristic scale radius a, the cooling radius in units of a (0<alpha<1), the central temperature in units of T_0 (0<t<1), and the asymptotic baryon fraction in units of the cosmic value (f~1). It is shown that our model is able to reproduce the three-dimensional density and temperature profiles inferred from X-ray observations of real clusters within a 20 per cent accuracy over most of the radial range. Some possible applications are briefly discussed.
سجل دخول لتتمكن من نشر تعليقات
التعليقات
جاري جلب التعليقات
حدث خطأ أثناء جلب التعليقات!
حذف التعليق
هل أنت متأكد أنك ترغب في حذف تعليقك ؟
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
A. Sarkar
,P. Mukherjee
,P. Barat
.
(2007)
.
"Rietveld refinement of ZrSiO4: application of a phenomenological model of anisotropic peak width"
.
Apu Sarkar
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا