ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of magnetic anisotropy in (Ga,Mn)As by lithography-induced strain relaxation

83   0   0.0 ( 0 )
 نشر من قبل Katrin Pappert
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain control of magnetic anisotropy in epitaxial (Ga,Mn)As by anisotropic strain relaxation in patterned structures. The strain in the structures is characterized using sophisticated X-ray techniques. The magnetic anisotropy before patterning of the layer, which shows biaxial easy axes along [100] and [010], is replaced by a hard axis in the direction of large elastic strain relaxation and a uniaxial easy axis in the direction where pseudomorphic conditions are retained. This strong anisotropy can not be explained by shape anisotropy and is attributed solely to lattice strain relaxation. Upon increasing the uniaxial strain anisotropy in the (Ga,Mn)As stripes, we also observe an increase in magnetic anisotropy.



قيم البحث

اقرأ أيضاً

227 - C. King , J. Zemen , K. Olejnik 2010
We present an experimental and theoretical study of magnetocrystalline anisotropies in arrays of bars patterned lithographically into (Ga,Mn)As epilayers grown under compressive lattice strain. Structural properties of the (Ga,Mn)As microbars are inv estigated by high-resolution X-ray diffraction measurements. The experimental data, showing strong strain relaxation effects, are in good agreement with finite element simulations. SQUID magnetization measurements are performed to study the control of magnetic anisotropy in (Ga,Mn)As by the lithographically induced strain relaxation of the microbars. Microscopic theoretical modeling of the anisotropy is performed based on the mean-field kinetic-exchange model of the ferromagnetic spin-orbit coupled band structure of (Ga,Mn)As. Based on the overall agreement between experimental data and theoretical modeling we conclude that the micropatterning induced anisotropies are of the magnetocrystalline, spin-orbit coupling origin.
A small fraction of phosphorus (up to 10 %) was incorporated in ferromagnetic (Ga,Mn)As epilayers grown on a GaAs substrate. P incorporation allows reducing the epitaxial strain or even change its sign, resulting in strong modifications of the magnet ic anisotropy. In particular a reorientation of the easy axis toward the growth direction is observed for high P concentration. It offers an interesting alternative to the metamorphic approach, in particular for magnetization reversal experiments where epitaxial defects stongly affect the domain wall propagation.
241 - K. Pappert , C. Gould , M. Sawicki 2008
This paper discusses transport methods for the investigation of the (Ga,Mn)As magnetic anisotropy. Typical magnetoresistance behaviour for different anisotropy types is discussed, focusing on an in depth discussion of the anisotropy fingerprint techn ique and extending it to layers with primarily uniaxial magnetic anisotropy. We find that in all (Ga,Mn)As films studied, three anisotropy components are always present. The primary biaxial along ([100] and [010]) along with both uniaxial components along the [110] and [010] crystal directions which are often reported separately. Various fingerprints of typical (Ga,Mn)As transport samples at 4 K are included to illustrate the variation of the relative strength of these anisotropy terms. We further investigate the temperature dependence of the magnetic anisotropy and the domain wall nucleation energy with the help of the fingerprint method.
161 - M. Glunk , J. Daeubler , L. Dreher 2009
We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. An almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.
We show that effective electrical control of the magnetic properties in the ferromagnetic semiconductor (Ga,Mn)As is possible using the strain induced by a piezoelectric actuator even in the limit of high doping levels and high Curie temperatures, wh ere direct electric gating is not possible. We demonstrate very large and reversible rotations of the magnetic easy axis. We compare the results obtained from magneto-transport and SQUID magnetometry measurements, extracting the dependence of the piezo-induced uniaxial magnetic anisotropy constant upon strain in both cases and detailing the limitations encountered in the latter approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا