ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron and phonon Cooling in a Superconductor - Normal Metal - Superconductor Tunnel Junction

153   0   0.0 ( 0 )
 نشر من قبل H. Courtois
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence for the cooling of normal metal phonons by electron tunneling in a Superconductor - Normal metal - Superconductor tunnel junction. The normal metal electron temperature is extracted by comparing the device current-voltage characteristics to the theoretical prediction. We use a quantitative model for the phonon cooling that includes the electron-phonon coupling in the normal metal and the Kapitza resistance between the substrate and the metal. It gives an excellent fit to the data and enables us to extract an effective phonon temperature in the normal metal.



قيم البحث

اقرأ أيضاً

We investigate heat and charge transport in NNIS tunnel junctions in the diffusive limit. Here N and S are massive normal and superconducting electrodes (reservoirs), N is a normal metal strip, and I is an insulator. The flow of electric current in s uch structures at subgap bias is accompanied by heat transfer from the normal metal into the superconductor, which enables refrigeration of electrons in the normal metal. We show that the two-particle current due to Andreev reflection generates Joule heating, which is deposited in the N electrode and dominates over the single-particle cooling at low enough temperatures. This results in the existence of a limiting temperature for refrigeration. We consider different geometries of the contact: one-dimensional and planar, which is commonly used in the experiments. We also discuss the applicability of our results to a double-barrier SINIS microcooler.
120 - D.S. Golubev , A.S. Vasenko 2012
We consider a model NISIN system with two junctions in series, where N is a normal metal, S is a superconductor and I is an insulator. We assume that the resistance of the first junction is high, while the resistance of the second one is low. In this case the first junction cools the left normal electrode, while the second junction partially removes excited quasiparticles from the superconductor. We consider cooling properties of this double junction structure. It is shown that the cooling power depends strongly on the ratio of the resistances of the two junctions. In conclusion, we derive a generalized expression for the cooling power of a NIS tunnel junction taking into account charge imbalance effects.
We consider a voltage-biased Normal metal-Insulator-Superconductor (NIS) tunnel junction, connected to a high-temperature external electromagnetic environment. This model system features the commonly observed subgap leakage current in NIS junctions t hrough photon-assisted tunneling which is detrimental for applications. We first consider a NIS junction directly coupled to the environment and analyze the subgap leakage current both analytically and numerically; we discuss the link with the phenomenological Dynes parameter. Then we focus on a circuit where a low-temperature lossy transmission line is inserted between the NIS junction and the environment. We show that the subgap leakage current is exponentially suppressed as the length, $ell$, and the resistance per unit length, $R_0$, of the line are increased. We finally discuss our results in view of the performance of NIS junctions in applications.
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. Firstly, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do no more obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Secondly, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.
We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that f or conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا