ﻻ يوجد ملخص باللغة العربية
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of Lindbald-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of non-Lindblad type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.
We investigate the non-Markovian characteristics in continuous measurement of a charge qubit by a quantum point contact. The backflow of information from the reservoir to the system in the non-Markovian domain gives rise to strikingly different qubit
We analyze the dynamics of a continuously observed, damped, microwave driven solid state charge qubit. The qubit consists of a single electron in a double well potential, coupled to an oscillating electric field, and which is continuously observed by
In the context of a charge qubit under continuous monitoring by a single electron transistor, we propose an unraveling of the generalized quantum Markovian master equation into an ensemble of individual quantum trajectories for stochastic point proce
The correlated-projection technique has been successfully applied to derive a large class of highly non Markovian dynamics, the so called non Markovian generalized Lindblad type equations or Lindblad rate equations. In this article, general unravelli
We present measurements of the Berry Phase in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. Our results demonstrate the remarkable degree of coherent control achievable in the presence of a highly complex sol