ﻻ يوجد ملخص باللغة العربية
The correlated-projection technique has been successfully applied to derive a large class of highly non Markovian dynamics, the so called non Markovian generalized Lindblad type equations or Lindblad rate equations. In this article, general unravellings are presented for these equations, described in terms of jump-diffusion stochastic differential equations for wave functions. We show also that the proposed unravelling can be interpreted in terms of measurements continuous in time, but with some conceptual restrictions. The main point in the measurement interpretation is that the structure itself of the underlying mathematical theory poses restrictions on what can be considered as observable and what is not; such restrictions can be seen as the effect of some kind of superselection rule. Finally, we develop a concrete example and we discuss possible effects on the heterodyne spectrum of a two-level system due to a structured thermal-like bath with memory.
For a bosonic (fermionic) open system in a bath with many bosons (fermions) modes, we derive the exact non-Markovian master equation in which the memory effect of the bath is reflected in the time dependent decay rates. In this approach, the reduced
We present a detailed microscopic derivation for a non-Markovian master equation for a driven two-state system interacting with a general structured reservoir. The master equation is derived using the time-convolutionless projection operator techniqu
We present a general quantum fluctuation theorem for the entropy production of an open quantum system whose evolution is described by a Lindblad master equation. Such theorem holds for both local and global master equations, thus settling the dispute
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of Lindbald-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this
We present a general scheme to map correlated nonequilibrium quantum impurity problems onto an auxiliary open quantum system of small size. The infinite fermionic reservoirs of the original system are thereby replaced by a small number $N_B$ of nonin