ترغب بنشر مسار تعليمي؟ اضغط هنا

Resistive hystersis effects in perovskite oxide-based heterostructure junctions

212   0   0.0 ( 0 )
 نشر من قبل W. Prellier
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we report the electrical and structural properties of the oxide-based metal/ferroelectric/metal (MFM) junctions. The heterostructures are composed of ultrathin layers of La0.7Ca0.3MnO3 (LCMO) as a metallic layer and, BaTiO3 (BTO) as a ferroelectric layer. Junction based devices, having the dimensions of 400 x 200 micom2, have been fabricated upon LCMO/BTO/LCMO heterostructures by photolithography and Ar-ion milling technique. The DC current-voltage (I-V) characteristics of the MFM junctions were carried out. At 300 K, the devices showed the linear (I-V) characteristics, whereas at 77 K, (I-V) curves exhibited some reproducible switching behaviours with well-defined remnant currents. The resulting resistance modulation is very different from what was already reported in ultrathin ferroelectric layers displaying resistive switching. A model is presented to explain the datas



قيم البحث

اقرأ أيضاً

Epitaxial strain is a proven route to enhancing the properties of complex oxides, however, the details of how the atomic structure accommodates strain are poorly understood due to the difficulty of measuring the oxygen positions in thin films. We pre sent a general methodology for determining the atomic structure of strained oxide films via x-ray diffraction, which we demonstrate using LaNiO3 films. The oxygen octahedral rotations and distortions have been quantified by comparing the intensities of half-order Bragg peaks, arising from the two unit cell periodicity of the octahedral rotations, with the calculated structure factor. Combining ab initio density functional calculations with these experimental results, we determine systematically how strain modifies the atomic structure of this functional oxide.
We report the first observation of coherent surface states on cubic perovskite oxide SrVO3(001) thin films through spectroscopic imaging scanning tunneling microscopy. A direct link between the observed atomic-scale interference patterns and the form ation of a dxy-derived surface state is supported by first-principles calculations. Furthermore, we show that the apical oxygens on the topmost VO2 plane play a critical role in controlling the spectral weight of the observed coherent surface state.
Understanding and controlling the interfacial magnetic properties of ferromagnetic thin films are crucial for spintronic device applications. However, using conventional magnetometry, it is difficult to detect them separately from the bulk properties . Here, by utilizing tunneling anisotropic magnetoresistance in a single-barrier heterostructure composed of La0.6Sr0.4MnO3 (LSMO)/ LaAlO3 (LAO)/ Nb-doped SrTiO3 (001), we reveal the presence of a peculiar strong two-fold magnetic anisotropy (MA) along the [110]c direction at the LSMO/LAO interface, which is not observed in bulk LSMO. This MA shows unknown behavior that the easy magnetization axis rotates by 90{deg} at an energy of 0.2 eV below the Fermi level in LSMO. We attribute this phenomenon to the transition between the eg and t2g bands at the LSMO interface. Our finding and approach to understanding the energy dependence of the MA demonstrate a new possibility of efficient control of the interfacial magnetic properties by controlling the band structures of oxide heterostructures.
Functional oxides based resistive memories are recognized as potential candidate for the next-generation high density data storage and neuromorphic applications. Fundamental understanding of the compositional changes in the functional oxides is requi red to tune the resistive switching characteristics for enhanced memory performance. Herein, we present the micro/nano-structural and compositional changes induced in a resistive oxide memory during resistive switching. Oxygen deficient amorphous chromium doped strontium titanate (Cr:$a$-SrTiO$_{3-x}$) based resistance change memories are fabricated in a Ti/Cr:$a$-SrTiO$_{3-x}$ heterostructure and subjected to different biasing conditions to set memory states. Transmission electron microscope based cross-sectional analyses of the memory devices in different memory states shows that the micro/nano-structural changes in amorphous complex oxide and associated redox processes define the resistive switching behavior. These experimental results provide insights and supporting material for Ref. [1].
We report on the growth of heterostructures composed of layers of the high-Curie temperature ferromagnet Co-doped (La,Sr)TiO3 (Co-LSTO) with high-mobility SrTiO3 (STO) substrates processed at low oxygen pressure. While perpendicular spin-dependent tr ansport measurements in STO//Co-LSTO/LAO/Co tunnel junctions demonstrate the existence of a large spin polarization in Co-LSTO, planar magnetotransport experiments on STO//Co-LSTO samples evidence electronic mobilities as high as 10000 cm2/Vs at T = 10 K. At high enough applied fields and low enough temperatures (H < 60 kOe, T < 4 K) Shubnikov-de Haas oscillations are also observed. We present an extensive analysis of these quantum oscillations and relate them with the electronic properties of STO, for which we find large scattering rates up to ~ 10 ps. Thus, this work opens up the possibility to inject a spin-polarized current from a high-Curie temperature diluted oxide into an isostructural system with high-mobility and a large spin diffusion length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا