ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of Mott transition in VO_2 and programmable critical temperature sensor

87   0   0.0 ( 0 )
 نشر من قبل Hyuntak Kim
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependence of the Mott metal-insulator transition (MIT) is studied with a VO_2-based two-terminal device. When a constant voltage is applied to the device, an abrupt current jump is observed with temperature. With increasing applied voltages, the transition temperature of the MIT current jump decreases. We find a monoclinic and electronically correlated metal (MCM) phase between the abrupt current jump and the structural phase transition (SPT). After the transition from insulator to metal, a linear increase in current (or conductivity) is shown with temperature until the current becomes a constant maximum value above T_{SPT}=68^oC. The SPT is confirmed by micro-Raman spectroscopy measurements. Optical microscopy analysis reveals the absence of the local current path in micro scale in the VO_2 device. The current uniformly flows throughout the surface of the VO_2 film when the MIT occurs. This device can be used as a programmable critical temperature sensor.



قيم البحث

اقرأ أيضاً

The correlation-driven Mott transition is commonly characterized by a drop in resistivity across the insulator-metal phase boundary; yet, the complex permittivity provides a deeper insight into the microscopic nature. We investigate the frequency- an d temperature-dependent dielectric response of the Mott insulator $kappa$-(BEDT-TTF)$_{2}$-Cu$_2$(CN)$_3$ when tuning from a quantum spin liquid into the Fermi-liquid state by applying external pressure and chemical substitution of the donor molecules. At low temperatures the coexistence region at the first-order transition leads to a strong enhancement of the quasi-static dielectric constant $epsilon_1$ when the effective correlations are tuned through the critical value. Several dynamical regimes are identified around the Mott point and vividly mapped through pronounced permittivity crossovers. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory.
397 - M. Taguchi , A. Chainani , S. Ueda 2015
We have studied the electronic structure of bulk single crystals and epitaxial films of magnetite Fe$_3$O$_4$. Fe $2p$ core-level spectra show clear differences between hard x-ray (HAX-) and soft x-ray (SX-) photoemission spectroscopy (PES), indicati ve of surface effects. The bulk-sensitive spectra exhibit temperature ($T$)-dependent charge excitations across the Verwey transition at $T_V$=122 K, which is missing in the surface-sensitive spectra. An extended impurity Anderson model full-multiplet analysis reveals roles of the three distinct Fe-species (A-Fe$^{3+}$, B-Fe$^{2+}$, B-Fe$^{3+}$) below $T_V$ for the Fe $2p$ spectra, and its $T-$dependent evolution. The Fe $2p$ HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the magnetically distinct sites associated with the charge excitations. Valence band HAXPES shows finite density of states at $E_F$ for the polaronic metal with remnant order above $T_V$, and a clear gap formation below $T_V$. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B-Fe$^{2+}$ and B-Fe$^{3+}$ electronic states, consistent with resistivity and bulk-sensitive optical spectra.
132 - S.S.Rao , S.V.Bhat 2007
Nanoparticles (size 20, 40 and 60 nm) of Pr_0.5Sr_0.5MnO_3 are prepared by sol-gel technique and their magnetic properties are studied using ferromagnetic resonance and magnetization measurements. A comparison with the properties of the bulk material shows that the ferromagnetic transition at 265 K remains unaffected but the anti-ferromagnetic transition at T_N = 150 K disappears in the nanoparticles. Further, the temperature dependence of magnetic anisotropy shows a complex behavior, being higher in the nanoparticles at high temperatures and lower at lower temperatures in comparison with the bulk.
The surfaces generated by cleaving non-polar, two-dimensional oxides are often considered to be perfect or ideal. However, single particle spectroscopies on Sr2RuO4, an archetypal non-polar two dimensional oxide, show significant cleavage temperature dependence. We demonstrate that this is not a consequence of the intrinsic characteristics of the surface: lattice parameters and symmetries, step heights, atom positions, or density of states. Instead, we find a marked increase in the density of defects at the mesoscopic scale with increased cleave temperature. The potential generality of these defects to oxide surfaces may have broad consequences to interfacial control and the interpretation of surface sensitive measurements.
The interaction-driven Mott transition in the half-filled Hubbard model is a first-order phase transition that terminates at a critical point $(T_mathrm{c},U_mathrm{c})$ in the temperature-interaction plane $T-U$. A number of crossovers occur along l ines that extend for some range above $(T_mathrm{c},U_mathrm{c})$. Asymptotically close to $(T_mathrm{c},U_mathrm{c})$, these lines coalesce into the so-called Widom line. The existence of $(T_mathrm{c},U_mathrm{c})$ and of the associated crossovers becomes unclear when long-wavelength fluctuations or long-range order occur above $(T_mathrm{c},U_mathrm{c})$. We study this problem using continuous-time quantum Monte Carlo methods as impurity solvers for both Dynamical Mean-Field Theory (DMFT) and Cellular Dynamical Mean-Field Theory (CDMFT). We contrast the cases of the square lattice, where antiferromagnetic fluctuations dominate in the vicinity of the Mott transition, and the triangular lattice where they do not. The inflexion points and maxima found near the Widom line for the square lattice can serve as proxy for the triangular lattice case. But the only crossover observable in all cases at sufficiently high temperature is that associated with the opening of the Mott gap. The same physics also controls an analog crossover in the resistivity called the Quantum Widom line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا