ﻻ يوجد ملخص باللغة العربية
A new type of (Ga,Mn)As microstructures with laterally confined electronic and magnetic properties has been realized by growing (Ga,Mn)As films on [1-10]-oriented ridge structures with (113)A sidewalls and (001) top layers prepared on GaAs(001) substrates. The temperature- and field-dependent magnetotransport data of the overgrown structures are compared with those obtained from planar reference samples revealing the coexistence of electronic and magnetic properties specific for (001) and (113)A (Ga,Mn)As on a single sample.
General expressions for the longitudinal and transverse resistivities of single-crystalline cubic and tetragonal ferromagnets are derived from a series expansion of the resistivity tensor with respect to the magnetization orientation. They are applie
In metal organic vapor phase epitaxy of GaN, the growth mode is sensitive to reactor temperature. In this study, V-pit-shaped GaN has been grown on normal c-plane cone-patterned sapphire substrate by decreasing the growth temperature of high-temperat
Changing the morphology of the growing surface and the nature of residual impurities in (Ge,Mn) layers - by using different substrates - dramatically changes the morphology of the ferromagnetic Mn-rich inclusions and the magnetotransport properties.
Magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As have been investigated. Measurements at low temperature (50 mK) and high magnetic field (<= 27 T) have been employed in order to determine the hole concentration p = 3.5x10^20 cm ^-
The magnetic and transport properties of (GaMn)As are known to be influenced by postgrowth annealing, and it is generally accepted that these modifications are due to outdiffusion of Mn interstitials. We show that the annealing-induced modifications