ﻻ يوجد ملخص باللغة العربية
The quantum efficiency of an electroluminescent intersubband emitter based on InAs/AlSb has been measured as a function of the magnetic field up to 20T. Two series of oscillations periodic in 1/B are observed, corresponding to the elastic and inelastic scattering of electrons of the upper state of the radiative transitions. Experimental results are accurately reproduced by a calculation of the excited state lifetime as a function of the applied magnetic field. The interpretation of these data gives an exact measure of the relative weight of the scattering mechanisms and allows the extraction of material parameters such as the energy dependent electron effective mass and the optical phonon energy.
: n-type Ge/SiGe asymmetric-coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spec
The science and applications of electronics and optoelectronics have been driven for decades by progress in growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantiz
In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherenc
We have observed that the tunneling magnetoconductance between two-dimensional (2D) electron gases formed at nominally identical InAs-AlSb interfaces most often exhibits two sets of Shubnikov-de Haas oscillations with almost the same frequency. This
Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots