ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative quantum efficiency in an InAs/AlSb intersubband transition

340   0   0.0 ( 0 )
 نشر من قبل Cl\\e'ment Faugeras
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum efficiency of an electroluminescent intersubband emitter based on InAs/AlSb has been measured as a function of the magnetic field up to 20T. Two series of oscillations periodic in 1/B are observed, corresponding to the elastic and inelastic scattering of electrons of the upper state of the radiative transitions. Experimental results are accurately reproduced by a calculation of the excited state lifetime as a function of the applied magnetic field. The interpretation of these data gives an exact measure of the relative weight of the scattering mechanisms and allows the extraction of material parameters such as the energy dependent electron effective mass and the optical phonon energy.



قيم البحث

اقرأ أيضاً

: n-type Ge/SiGe asymmetric-coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spec troscopic experiments on 20-module superstructures, each featuring two Ge wells coupled through a Ge-rich tunnel barrier, as a function of the geometry parameters of the design and the P dopant concentration. Through the comparison of THz spectroscopic data with numerical calculations of intersubband optical absorption resonances, we demonstrated that it is possible to tune by design the energy and the spatial overlap of quantum confined subbands in the conduction band of the heterostructures. The high structural/interface quality of the samples and the control achieved on subband hybridization are the promising starting point towards a working electrically pumped light-emitting device.
The science and applications of electronics and optoelectronics have been driven for decades by progress in growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantiz ed states in semiconductor quantum wells (intersubband transitions). However, current quantum well devices are limited in functionality and versatility by diffusive interfaces and the requirement of lattice-matched growth conditions. Here, we introduce the concept of intersubband transitions in van der Waals quantum wells and report their first experimental observation. Van der Waals quantum wells are naturally formed by two-dimensional (2D) materials and hold unexplored potential to overcome the aforementioned limitations: They form atomically sharp interfaces and can easily be combined into heterostructures without lattice-matching restrictions. We employ near-field local probing to spectrally resolve and electrostatically control the intersubband absorption with unprecedented nanometer-scale spatial resolution. This work enables exploiting intersubband transitions with unmatched design freedom and individual electronic and optical control suitable for photodetectors, LEDs and lasers.
In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherenc e in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.
74 - Y. Lin , E. M. Gonzalez , 2003
We have observed that the tunneling magnetoconductance between two-dimensional (2D) electron gases formed at nominally identical InAs-AlSb interfaces most often exhibits two sets of Shubnikov-de Haas oscillations with almost the same frequency. This result is explained quantitatively with a model of the conductance in which the 2D gases have different densities and can tunnel between Landau levels with different quantum indices. When the epitaxial growth conditions of the interfaces are optimized, the zero-bias magnetoconductance shows a single set of oscillations, thus proving that the asymmetry between the two electron gases can be eliminated.
Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا