ﻻ يوجد ملخص باللغة العربية
The science and applications of electronics and optoelectronics have been driven for decades by progress in growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantized states in semiconductor quantum wells (intersubband transitions). However, current quantum well devices are limited in functionality and versatility by diffusive interfaces and the requirement of lattice-matched growth conditions. Here, we introduce the concept of intersubband transitions in van der Waals quantum wells and report their first experimental observation. Van der Waals quantum wells are naturally formed by two-dimensional (2D) materials and hold unexplored potential to overcome the aforementioned limitations: They form atomically sharp interfaces and can easily be combined into heterostructures without lattice-matching restrictions. We employ near-field local probing to spectrally resolve and electrostatically control the intersubband absorption with unprecedented nanometer-scale spatial resolution. This work enables exploiting intersubband transitions with unmatched design freedom and individual electronic and optical control suitable for photodetectors, LEDs and lasers.
Van der Waals materials can be easily combined in lateral and vertical heterostructures, providing an outstanding platform to engineer elusive quantum states of matter. However, a critical problem in material science is to establish tangible links be
The recent isolation of two-dimensional van der Waals magnetic materials has uncovered rich physics that often differs from the magnetic behaviour of their bulk counterparts. However, the microscopic details of fundamental processes such as the initi
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der
Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed in mesoscopic samples with a length shorter than or comparable with the phase coherence length. Here, we report the observation of magnetoc
Control over the electronic spectrum at low energy is at the heart of the functioning of modern advanced electronics: high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. Most of those devices rely on the m