ﻻ يوجد ملخص باللغة العربية
We report a study of the temperature dependence of the surface resistance RS in the graphite intercalated compound (GIC) CaC6, where superconductivity at 11.5 K was recently discovered. Experiments are carried out using a copper dielectrically loaded cavity operating at 7 GHz in a hot finger configuration. Bulk CaC6 samples have been synthesized from highly oriented pyrolytic graphite. Microwave data allows to extract unique information on the quasiparticle density and on the nature of pairing in superconductors. The analysis of RS(T) confirms our recent experimental findings that CaC6 behaves as a weakly-coupled, fully gapped, superconductor.
The linear and nonlinear response to a microwave electromagnetic field of two c-axis oriented polycrystalline samples of the newly discovered superconductor CaC6 (Tc = 11.5 K) is studied in the superconducting state down to 2 K. The surface resistanc
We have performed microwave measurements on superconducting hot-isostatically- pressed (HIPed) bulk MgB2 using a parallel-plate resonator technique. The high density and strength of the HIPed material allowed preparation of samples with mirror-like s
We describe an experimental protocol to characterize magnetic field dependent microwave losses in superconducting niobium microstrip resonators. Our approach provides a unified view that covers two well-known magnetic field dependent loss mechanisms:
We discuss the current status of the theory of the high-temperature superconductivity in intercalated graphites YbC6 and CaC6. We emphasize that while the general picture of conventional, phonon-driven superconductivity has already emerged and is gen
We report on the microwave (mw) properties of coaxial cavities built by using bulk MgB2 superconductor prepared by reactive liquid Mg infiltration technology. We have assembled a homogeneous cavity, by using an outer MgB2 cylinder and an inner MgB2 r